
Overfitting
Training sets and testing sets

Below is data we collected about the association between num-
ber of hours studied and students’ test scores in a math class.
Our goal is to predict the exam score from number of hours
studied. Both plots below show the same data, but show the
predictions from two different predictive models.

65

70

75

80

85

90

5 6 7 8 9 10
hours

sc
or

e

Math class data

65

70

75

80

85

90

5 6 7 8 9 10
hours

sc
or

e

Which model looks more appropriate: the blue, or the red?
More specifically,

• Does it make sense that there should be a big difference
between studying 6.7 hours vs studying 6.8 hours?

• Should studying a little more make your score go down?

The blue model seems more reasonable: studying more should
steadily increase your score. The predictive model on the right
seems like it took the particular data points “too seriously!”

1

This will be an issue if a new set of students from the same
class comes along and we want to predict what their exam
scores will be based on the amount of hours studied. Let’s use
the blue and red models to predict scores from more students
from this same class.

65

70

75

80

85

90

5 6 7 8 9 10
hours

sc
or

e

Math class data

65

70

75

80

85

90

5 6 7 8 9 10
hours

sc
or

e

We see that the blue line is prepared to predict the exam scores
well enough for these students–even though the model was not
fit using them! The red model, however, does poorly. It is so
beholden to the first group of students that it doesn’t know
how to manage when the students are even slightly different.
In statistics, we say that the red model was overfit.

Overfitting The practice of using a predictive model which is
very effective at explaining the data used to fit it, but is
poor at making predictions on new data.

Overfitting with polynomials

Usually, overfitting occurs as a result of applying a model that
is too complex, like the red one we saw for the math class data
above. We created that overfitted predictive model on the right
by fitting a polynomial with a high degree. Polynomials are
quite powerful models and are capable of creating very complex
predictive functions. The higher the polynomial degree, the
more complex function it can create.

2

Let’s illustrate by fitting polynomial models with progressively
higher degrees to the data set above.

65

70

75

80

85

90

5 6 7 8 9 10
hours

sc
or

e

Degree 5 polynomial

65

70

75

80

85

90

5 6 7 8 9 10
hours

sc
or

e

Degree 6 polynomial

65

70

75

80

85

90

5 6 7 8 9 10
hours

sc
or

e

Degree 7 polynomial

The higher the polynomial degree, the closer the prediction
function comes to perfectly fitting the data1. Therefore, when
it comes to evaluating which model is the best for prediction, we
would say the degree seven polynomial is best. Indeed, based
on our knowledge so far, it would have the highest 𝑅2. The true
test is yet to come, though. Let’s measure these three models
on how well they predict to the second group of students that
weren’t used to fit the model.

65

70

75

80

85

90

5 6 7 8 9 10
hours

sc
or

e

Degree 5 polynomial

65

70

75

80

85

90

5 6 7 8 9 10
hours

sc
or

e

Degree 6 polynomial

65

70

75

80

85

90

5 6 7 8 9 10
hours

sc
or

e

Degree 7 polynomial

As we increase the degree, the polynomial begins to perform
worse on this new data as it bends to conform to the original
data. For example, we see that for the student having studied
around five and a half hours, the fifth degree polynomial does
well, but the seven degree polynomial does horribly! To put a

1We say a function that perfectly predicts each data point interpolates
the data. See the first red curve for the math class exams.

3

cherry on top, the red model we showed you in the beginnng of
these notes was a twenty degree polynomial!

What we see is that the higher the degree, the more risk we run
of using a model that overfits.

Training and testing sets: a workflow to curb
overfitting

What you should have taken away so far is the following: we
should not fit the model (set the 𝑏0, 𝑏1 coefficients) and evaluate
the model (judge its predictive power) with the same data set!

We can further back up this idea quantitatively. The plot below
shows the 𝑅2 value for math class models fit with different
polynomial degrees.

0.75

0.80

0.85

0.90

1 2 3 4 5 6 7 8 9 10
degree

R
sq

The 𝑅2 value goes steadily upwards as the polynomial degree
goes up. In fact this is mathematically guaranteed to happen:
for a fixed data set the 𝑅2 value for a polynomial model with
higher degree will always be higher than a polynomial model with
lower degree.

This should be disconcerting, especially since we earlier saw
that the model with the highest 𝑅2 did the worst on our unseen
data. What you might also notice is that the 𝑅2 isn’t increasing
by that much between degrees as the degree gets higher. This
suggests that adding that additional degree isn’t improving our

4

general predictive power much; it’s just helping the model tailor
itself to the specific data we have.

Does that mean 𝑅2 is not a good metric to evaluate our model?
Not necessarily. We can just change our workflow slightly. In-
stead of thinking in terms of a single data set, we can partition,
or split the observations of the data set into two separate sets.
We can use one of these data sets to fit the model, and the
other to evaluate it.

Training Set The set of observations used to fit a predictive
model; i.e. estimate the model coefficients.

Testing Set The set of observations used to assess the accu-
racy of a predictive model. This set is disjoint from the
training set.

The partition of a data frame into training and testing sets is
illustrated by the diagram below.

y x1 x2 x3

The original data frame consists of 10 observations. For each
observation we have recorded a response variable, 𝑦, and three
predictors, 𝑥1, 𝑥2, and 𝑥3. If we do an 80-20 split, then 8 of
the rows will randomly be assigned to the training set (in blue).
The 2 remaining rows (rows 2 and 6) are assigned to the testing
set (in gold).

So to recap, our new workflow for predictive modeling
involves:

1. Splitting the data into a training and a testing set

5

2. Fitting the model to the training set
3. Evaluating the model using the testing set

More on splitting the data

As in the diagram above, a standard partition is to dedicate
80% of the observations to the training set and the remainder
to the testing set (a 80-20 split), though this is not a rule which
is set in stone. The other question is how best to assign the
observations to the two sets. In general, it is best to do this
randomly to avoid one set that is categorically different than
the other.

Mean square error: another metric for evaluation

While 𝑅2 is the most immediate metric to evaluate the predic-
tive quality of a linear regression, it is quite specific to linear
modeling. Therefore, data scientists have come up with an-
other, more general metric called mean square error (MSE).
Let 𝑦𝑖 be observations of the response variable in the testing
set, and ̂𝑦𝑖 be your model’s predictions for those observations.
Then MSE is given by

MSE = 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2

You may notice that for a linear regression model, MSE =
1
𝑛RSS.

A common offshoot is root mean square error (RMSE),
which you can obtain by taking the square root of MSE. Much
like what standard deviation does for variance, RMSE allows
you to think above the average error on a regular scale rather
than on a squared scale.

The Ideas in Code

Let’s shift the subject to mathematics to biology, and illustrate
the training and testing approaching to evaluating predictions

6

for the exam scores from a biology class with 200 students using
as a predictor the number of hours that they have studied. Let’s
visualize these data first.

60

70

80

90

5 6 7 8 9 10
hours

sc
or

e

Biology class

Here we are going to compare two models: a simple linear model
versus a 5th degree polynomial, both fit using the method of
least squares.

• Model 1: 𝑠𝑐𝑜𝑟𝑒 = 𝑏0 + 𝑏1 × ℎ𝑜𝑢𝑟𝑠
• Model 2: 𝑠𝑐𝑜𝑟𝑒 = 𝑏0 + 𝑏1 × ℎ𝑜𝑢𝑟𝑠 + 𝑏2 × ℎ𝑜𝑢𝑟𝑠2 + 𝑏3 ×

ℎ𝑜𝑢𝑟𝑠3 + 𝑏4 × ℎ𝑜𝑢𝑟𝑠4 + 𝑏5 × ℎ𝑜𝑢𝑟𝑠5

Step 1: Split data

We’ll use an 80-20 split, with each observation assigned to its
set randomly. There are many ways to do this via code: here
is one using functions we’ve seen.

• Generate a vector of 𝑛 observations (in this case, our data
has 200 observations) in which approximately 80 percent
of the observations are "train" and 20 percent of the
observations are "test". To do this, we can make use of
the sample() function.

7

set.seed(20)

train_or_test <- sample(x = c("train", "test"),
size = 200,
replace = TRUE,
prob = c(0.8, 0.2))

• mutate this vector onto our data frame (our data frame
here is called biology). Below, you can see which rows in
the data frame have been assigned to "train" and which
have been assigned to "test".

biology <- biology |>
mutate(set_type = train_or_test)

A tibble: 6 x 3
hours score set_type
<dbl> <dbl> <chr>

1 6.30 74.6 test
2 6.30 73.4 train
3 7.40 76.6 train
4 9.97 95.1 test
5 9.58 82.4 train
6 8.19 84.0 train

• split the data based on whether the observations are in
the "train" or "test" set.

biology_train <- biology |>
filter(set_type == "train")

biology_test <- biology |>
filter(set_type == "test")

Step 2: Fit the model to the training set

Now fit two models on the training data. We will be using
lm(), and for both models, the data argument is given by
biology_train.

8

lm_slr <- lm(score ~ hours, data = biology_train)
lm_poly <- lm(score ~ poly(hours, degree = 20, raw = T),

data = biology_train)

We can evaluate the 𝑅2’s for both models’ performance on the
training data just like before with glance(). Which model do
you expect to have a better training set 𝑅2 value?

library(broom)

glance(lm_slr) %>%
select(r.squared)

A tibble: 1 x 1
r.squared

<dbl>
1 0.693

glance(lm_poly) %>%
select(r.squared)

A tibble: 1 x 1
r.squared

<dbl>
1 0.715

Just as we might have guessed from looking at the model fits,
the polynomial model has a better 𝑅2 value when evaluated on
the training set.

Step 3: Evaluate the model on the testing set.

The real test of predictive power between the two models comes
now, when we will make exam score predictions using the test-
ing set: data which the model was not used to fit and hasn’t
seen.

9

We will still be using the predict() function for this purpose.
Now, we can just plug biology_test into the newdata argu-
ment!

score_pred_linear <- predict(lm_slr, newdata = biology_test)
score_pred_poly <- predict(lm_poly, newdata = biology_test)

Once these predictions ̂𝑦𝑖 are made, we then can use dplyr
code to:

• mutate on the predictions to our testing data
• set up the 𝑅2 formula and calculate2. In the code below,

we are using the formula

𝑅2 = 1 − RSS
TSS = 1 − ∑𝑛

𝑖=1(𝑦𝑖 − ̂𝑦𝑖)2

∑𝑛
𝑖=1(𝑦𝑖 − ̄𝑦)2

• We can also calculate MSE and RMSE as 1
𝑛RSS and

1
𝑛

√
RSS, respectively.

biology_test %>%
mutate(score_pred_linear = score_pred_linear,

score_pred_poly = score_pred_poly,
resid_sq_linear = (score - score_pred_linear)^2,
resid_sq_poly = (score - score_pred_poly)^2) %>%

summarize(TSS = sum((score - mean(score))^2),
RSS_linear = sum(resid_sq_linear),
RSS_poly = sum(resid_sq_poly),
n = n()) %>%

mutate(Rsq_linear = 1 - RSS_linear/TSS,
Rsq_poly = 1 - RSS_poly/TSS,
MSE_linear = RSS_linear/n,
MSE_poly = RSS_poly/n,
RMSE_linear = sqrt(MSE_linear),
RMSE_poly = sqrt(MSE_poly)) |>

select(Rsq_linear, Rsq_poly, MSE_linear, MSE_poly)

2Because ̂𝑦𝑖 involve information from the training data and 𝑦𝑖 and ̄𝑦 come
from the testing data, the decomposition of the sum of squares does not
work. So, we cannot interpret testing 𝑅2 as we would training 𝑅2, and
you may have a testing 𝑅2 less than 0. However, higher 𝑅2 values still
signal that the model has good predictive power.

10

A tibble: 1 x 4
Rsq_linear Rsq_poly MSE_linear MSE_poly

<dbl> <dbl> <dbl> <dbl>
1 0.664 0.629 26.6 29.3

Voila the linear model’s test set 𝑅2 is better than the polyno-
mial model’s test 𝑅2! We also see the MSE for the linear model
is lower than that for the polynomial model.

So which is the better predictive model: Model 1 or Model 2?
In terms of training, Model 2 came out of top, but Model 1 won
out in testing.

Again, while training 𝑅2 can tell us how well a predictive model
explains the structure in the data set upon which it was trained,
it is deceptive to use as a metric of true predictive accuracy.
The task of prediction is fundamentally one applied to unseen
data, so testing 𝑅2 is the appropriate metric. Model 1, the
simpler model, is the better predictive model. After all, the
data we are using looks much better modeled by a line than a
five degree polynomial.

Summary

This lecture is about overfitting: what happens when your
model takes the particular data set it was built on too seri-
ously. The more complex a model is, the more prone to overfit-
ting it is. Polynomial models are able to create very complex
functions thus high-degree polynomial models can easily over-
fit. Fitting a model and evaluating it on the same data set can
be problematic; if the model is overfitted the evaluation metric
(e.g. 𝑅2) might be very good, but the model might be lousy on
predictions on new data.

A better way to approach predictive modeling is to fit the model
to a training set then evaluate it with a separate testing set.

11

	Overfitting with polynomials
	Training and testing sets: a workflow to curb overfitting
	More on splitting the data
	Mean square error: another metric for evaluation

	The Ideas in Code
	Step 1: Split data
	Step 2: Fit the model to the training set
	Step 3: Evaluate the model on the testing set.

	Summary

