
Evaluating and Improving
Predictions

𝑅2, Adding Predictors, Transformations, and
Polynomials

In the last lecture we built our first prediction machine: a line
drawn through a scatter plot that that minimizes the sum of
squared residuals. In these lecture notes we focus on two ques-
tions: How can we evaluate the quality of our predictions? and
How can we improve them?

Evaluating the fit to your data

Once you have fit a linear model to a scatter plot, you are able
to answer questions such as:

What graduation rate would you expect for a state
with a poverty rate of 15%?

Graphically, this can be done by drawing a vertical line from
where the poverty rate is 15% and finding where that line in-
tersects your linear model. If you trace from that intersection
point horizontally to the y-axis, you’ll find the predicted grad-
uation rate.

1

75

80

85

90

95

0 5 10 15 20
Poverty

G
ra

du
at

es

From the plot above, we can tell that the model yields a predic-
tion around roughly 82.5%. To be more precise, we could plug
the x-value into our equation for the line and solve.

̂𝑦 = 96.2 + −0.89 ⋅ 15 = 82.85

So how good of a prediction is 82.85%? Until we observe a state
with a poverty rate of 15%, we’ll never know! What we can
know, however, is how well our model explains the structure
found in the data that we have observed. For those observa-
tions, we have both the predicted (or fitted) values ̂𝑦𝑖 as well
as their actual y-values 𝑦𝑖. These can be used to calculate a
statistic that measures the explanatory power of our model.

Measuring explanatory power: 𝑅2

𝑅2 is a statistic that captures how good the predictions from
your linear model are (̂𝑦) by comparing them another even sim-
pler model: ̄𝑦. To understand how this statistic is constructed
please watch this short video found in the Media Gallery on
bCourses (14 minutes).

2

R-squared (𝑅2) A statistic that measures the proportion of the
total variability in the y-variable (total sum of squares,
TSS) that is explained away using our model involving x
(sum of squares due to regression, SSR).

𝑅2 = 𝑆𝑆𝑅
𝑇 𝑆𝑆 = ∑𝑛

𝑖=1(̂𝑦𝑖 − ̄𝑦)2

∑𝑛
𝑖=1(𝑦𝑖 − ̄𝑦)2

Because the total variablity is composed of the explained
and the unexplain variability, 𝑅2 can be equivalent for-
mulated as 1 minus the proportion of total variability that
is unexplained by the model, which uses the more familiar
residual sum of squares (RSS).

𝑅2 = 1 − 𝑅𝑆𝑆
𝑇 𝑆𝑆 = 1 − ∑𝑛

𝑖=1(𝑦𝑖 − ̂𝑦𝑖)2

∑𝑛
𝑖=1(𝑦𝑖 − ̄𝑦)2

𝑅2 has the following properties:

1. Always takes values between 0 and 1.
2. 𝑅2 near 1 means predictions were more accurate.
3. 𝑅2 near 0 means predictions were less accurate.

3

https://bcourses.berkeley.edu/courses/1531766/external_tools/90481

Example: Poverty and Graduation

To fit the least squares linear regression model to predict grad-
uation rate using the poverty rate, we turn to the familiar lm()
function.

m1 <- lm(Graduates ~ Poverty, data = poverty)

For this particular model, 𝑅2 = .56. This means that poverty
rate is able to explain about 56% of the variability found in
graduation rates. That’s a good start!

Improving predictions

𝑅2 allows us to quantify how well the model explains the struc-
ture found in the data set. From a model-building standpoint,
it gives us a goal: to find a model with the highest possible 𝑅2.
Here we outline three different methods for pursuing this goal -
adding predictors, transformations, and polynomials - and we’d
look at a different data set for each one.

Adding Predictors

Let’s return to the data set that that we studying when we
first learned about multiple linear regression: ratings of Italian
restaurants from the ZAGAT guide. For each of the 168 restau-
rants in the data set, we have observations on the average price
of a meal, the food quality, the quality of the decor, the quality
of the service, and whether it is east or west of Fifth Avenue.

A tibble: 168 x 6
restaurant price food decor service geo
<chr> <dbl> <dbl> <dbl> <dbl> <chr>

1 Daniella Ristorante 43 22 18 20 west
2 Tello's Ristorante 32 20 19 19 west
3 Biricchino 34 21 13 18 west
4 Bottino 41 20 20 17 west
5 Da Umberto 54 24 19 21 west
6 Le Madri 52 22 22 21 west

4

7 Le Zie 34 22 16 21 west
8 Pasticcio 34 20 18 21 east
9 Belluno 39 22 19 22 east

10 Cinque Terre 44 21 17 19 east
i 158 more rows

Maybe we want a model that will tell us how much we will
have to spend at a new restaurant that is not upfront about its
pricing; or maybe we just opened a new restaurant and want
to know how much customers expect to spend. So price will
serve as our response variable, leaving us four possible predictor
variables. Let’s fit four different regression models, each one
incorporating more more information by adding a predictor.

m1 <- lm(price ~ food, data = zagat)
m2 <- lm(price ~ food + geo, data = zagat)
m3 <- lm(price ~ food + geo + decor, data = zagat)
m4 <- lm(price ~ food + geo + decor + service, data = zagat)

Unfortunately we can’t visualize these four linear models as four
lines on a scatterplot because only the first model describes a
line. The second describes two parallel lines; the third describes
two parallel planes in 3D; the fourth describes two parallel hy-
perplanes in 4D (�).

We can, however, compare these four models in an arena where
they’re all on the same playing field: how well they predict price.
To quantify that, we can calculate the 𝑅2 value for each.

model R_squared
1 m1 0.3931835
2 m2 0.3987720
3 m3 0.6278808
4 m4 0.6278809

Observe that the more information we provide the model - by
adding predictors - the greater the 𝑅2 becomes! This is not a
particular characteristic of the ZAGAT data set but of 𝑅2 in
general. Adding new predictors will never lower the 𝑅2 of a
model fit using least squares.

5

Non-linear transformation

The world is not always linear. We can create non-linear predic-
tion models by building off the above linear model machinery.
To demonstrate how to use this approach to increase the predic-
tive power of our model, we’ll turn to a non-linear trend that
should look familiar…

A single non-linear term

Take a question from flights lab as an example where we plot
the average airspeed vs. flight distance. First let’s try fitting a
linear model.

200

400

600

0 1000 2000
distance

av
g_

sp
ee

d

R squared = 0.72

A linear model does not seem appropriate to model average
speed from distance. There does appear to be a monotonically
increasing trend, but it starts out steeper then flattens out1.
This trend is reminiscent of functions like log or square root.

Lets try transforming our predictor (distance) with the log func-
tion to create a new variable called log_dist.

1We call this concave or sometimes diminishing marginal returns.

6

flights <- flights |>
mutate(log_dist = log(distance))

We can then fit a linear model using this new log_dist variable
as the predictor.

lm_speed_from_log_dist <-
lm(formula = avg_speed ~ log_dist, data=flights)

Looking at the data below, we see there does seem to be a
linear relationship between avg_speed and our new variable
log_dist! Notice the x-axis in the below plot is log_dist
whereas it was distance in the above plot.

200

400

600

5 6 7 8
log_dist

av
g_

sp
ee

d

R squared = 0.843

The linear model with log_dist (𝑅2 = 0.843) predicts
avg_speed better than the linear model with distance
(𝑅2 = 0.72)

We can now think of our predictive model as

̂𝑦 = 𝑏0 + 𝑏1 ⋅ log(𝑥)

In other words, our model is non-linear since 𝑥 appears inside
of a logarithm. We can plot the non-linear prediction function

7

in the original predictor distance and we see the prediction
function is curved!

200

400

600

0 1000 2000
distance

av
g_

sp
ee

d

So is this a linear model or a non-linear model? It’s both. We
created a new variable log_dist by transforming the original
variable; the prediction function is a linear function of this
new variable. But we can also think of this as a function of the
original variable distance; the prediction function is a non-
linear function of this original variable.

Polynomials

Sometimes we need an more complex transformation than just
a simple function (e.g.

√𝑥, log(𝑥), 𝑥2, ...). Take the following
example where there is a strong association between x and y,
but it’s not linear (this data, admitted, was simulated in R).

8

−40

−20

0

0 2 4
x

y

So how should we model this? Polynomials to the rescue!

A polynomial is a function like

𝑓(𝑥) = −20 + 34𝑥 − 16𝑥2 + 2𝑥3

More generally a polynomial is a function like

𝑓(𝑥) = 𝑐0 + 𝑐1 ⋅ 𝑥 + 𝑐2 ⋅ 𝑥2 + ⋯ + 𝑐𝑑 ⋅ 𝑥𝑑

where the 𝑑 +1 coefficients 𝑐0, 𝑐1, … , 𝑐𝑑 are constants The num-
ber 𝑑 is called the degree of the polynomial – this is the largest
exponent that appears.

Polynomials are flexible functions that can be quite useful for
modeling. We can fit a polynomial model by adding new trans-
formed variables to the data frame then fitting a linear model
with these new transformed variables. This is just like how
we fit a logarithmic function before by adding a new log trans-
formed variable to the data frame then fit a linear model.

The prediction function here is a polynomial given by

̂𝑦 = −20.086 + 34.669 ⋅ 𝑥 − 16.352 ⋅ 𝑥2 + 2.042 ⋅ 𝑥3

9

The Ideas in Code

Inspect model output with the broom library

Consider the code we ran earlier to fit a linear model which can
predict graduation rate using the poverty rate.

m1 <- lm(Graduates ~ Poverty, data = poverty)

When you run this code, you’ll see a new object appear in your
environment: m1. This new object, though, is not a vector or
a data frame. It’s a much richer object called a list that stores
all sorts of information about your linear model. You can click
through the different part of m1 in your environment pane, or
your can use functions from the broom package to extract the
important components using code.

library(broom)
glance(m1)

A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.558 0.549 2.50 61.8 3.11e-10 1 -118. 242. 248.
i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

The glance() function returns a series of different metrics used
to evaluate the quality of your model. First among those is
r-squared. Because the output of glance() is just another
data frame, we can extract just the r-squared column using
select().

glance(m1) |>
select(r.squared)

A tibble: 1 x 1
r.squared

<dbl>
1 0.558

Here’s the 𝑅2 we got earlier!

10

Fitting polynomials in R with poly()

In R, we can fit polynomials using the poly() function. Here
is the code that was used to fit the polynomial earlier in the
notes.

You do not need to worry about the meaning behind the raw
= TRUE argument. The simulated data frame mentioned ear-
lier is called df, and has two variables in it: predictor and
response.

lm(formula = response ~ poly(x = predictor,
degree = 3,
raw = TRUE), data = df)

Call:
lm(formula = response ~ poly(x = predictor, degree = 3, raw = TRUE),

data = df)

Coefficients:
(Intercept)

-20.086
poly(x = predictor, degree = 3, raw = TRUE)1

34.669
poly(x = predictor, degree = 3, raw = TRUE)2

-16.352
poly(x = predictor, degree = 3, raw = TRUE)3

2.042

Making predictions on a new observation with predict()

We have spending a lot of time talking about how to fit a model
meant for predicting, but have not actually done any predicting!
The predict() function can help us do this. It takes in two
main arguments:

• object: This is the linear model object which contains
the coefficients 𝑏0, …, 𝑏𝑝. In the graduate and poverty
example, this object was m1. We had m1 through m4 in
the ZAGAT example.

11

• newdata: This is a data frame containing the new obser-
vation(s). This data frame must at least contain each of
the predictor variables used in the column, with a value
of these variables for each observation.

Example: ZAGAT food rating

Here, we will use m2 from the ZAGAT example. This model
used 𝑓𝑜𝑜𝑑 and 𝑔𝑒𝑜 in an attempt to predict price at a restau-
rant.

First, let’s make a new data frame with a couple of new, made-
up observations.

restaurants <- data.frame(
food = c(25, 17),
geo = c("east", "west"))

One of these restaurants is located in east Manhattan and has
a food score of 25/30, while the other one is in west Manhattan
and has a food score of 17/30.

Now, we can use this data frame alongside our m2 model object
to make predictions for the prices.

predict(object = m2, newdata = restaurants)

1 2
55.89738 31.44043

We are predicted to have to pay roughly $56 at the first restau-
rant and roughly $31 at the second.

Summary

In this lecture we learned how to evaluate and improve out
predictions. While there are many metrics to measure the ex-
planatory power of a model, one of the most commonly used is
𝑅2, the proportion of the variability of the 𝑦 that is explained
by the model.

12

To improve our predictions - and increase the 𝑅2 - we saw three
different strategies. If you have additional predictors in your
data frame, its easy as pie to add them to your regression model
and you are guaranteed to increase your 𝑅2.

A second strategy is capture non-linear structure by creating
new variables that are simple transformations of the existing
variable. The third approach, also targeting non-linear struc-
ture, is to replace a single predictor with a polynomial.

13

	Evaluating the fit to your data
	Measuring explanatory power: R^2

	Improving predictions
	Adding Predictors
	Non-linear transformation
	Polynomials

	The Ideas in Code
	Inspect model output with the broom library
	Fitting polynomials in R with poly()
	Making predictions on a new observation with predict()

	Summary

