
Wrong by Design
Type I errors, Type II errors, and statistical power

Hypothesis tests are not flawless1. There are many ways in
which they can be misused: the hypotheses can be poorly formu-
lated, the p-value miscalculated or, more often, misinterpreted.
But even a hypothesis test conducted by an expert practitioner
is subject to arriving at an erroneous conclusion.

If the setting of the problem requires that a binary decision be
made regarding the null hypothesis - that it be either rejected
or retained - then it’s possible to come to the wrong conclusion.
Just as in the court system, where innocent people are some-
times wrongly convicted and the guilty sometimes walk free, so
too can the conclusion of a hypothesis test be in error.

What distinguishes statistical hypothesis tests from a court sys-
tem, however, is that our framework allows us to quantify and
control how often the data lead us to the incorrect conclusion.

Statistical Errors

In a hypothesis test, there are two competing hypotheses: the
null and the alternative, often abbreviated as 𝐻0 and 𝐻𝐴.
When the p-value is sufficiently low, 𝐻0 is rejected as a viable
explanation for the data. When the p-value is high, we fail to
reject 𝐻0.

1These lecture notes adapted from Introduction to Modern Statistics, First
Edition by Mine Çetinkaya-Rundel and Johanna Hardin, a textbook
from the OpenIntro Project.
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A statistical error is made whenever the conclusion of the test
is contrary to the underlying truth regarding the null hypothe-
sis.

Type I Error Rejecting the null hypothesis when it is actually
true. Also called a false positive.

Type II Error Failing to reject the null hypothesis when the
alternative hypothesis is actually true. Also called a false
negative.

The test comes to the correct conclusion in settings where it
fails to reject a null hypothesis that is actually true and when
it rejects the null hypothesis when the alternative hypothesis is
true. These four scenarios can be laid out as follows.

Test conclusion
Truth Reject H0 Fail to

reject H0
H0 is
true

Type I
Error

Good
decision

HA is
true

Good
decision

Type II
Error

To build your understanding of these different types of errors,
work through a few exercises.

Exercise 1

In a US court, the defendant is either innocent (𝐻0) or guilty
(𝐻𝐴). What does a type I Error represent in this context?
What does a type II Error represent? The table above may
be useful.

Check your answer

If the court makes a type I Error, this means the defendant
is innocent (𝐻0 true) but wrongly convicted. A type II Error
means the court failed to reject 𝐻0 (i.e., failed to convict the
person) when they were in fact guilty (𝐻𝐴 true).
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Exercise 2

Consider the case of Kristen Gilbert, the nurse on trial for caus-
ing Code Blue emergencies at her hospital. The court eventu-
ally found her guilty of the charges and sentenced her to life in
prison. If in fact she was innocent, what type of error did the
court commit?

Check your answer

This would be a Type I error: rejecting the null hypothesis that
she is innocent when it was in fact true.

Exercise 3

How could we reduce the probability of making a type I error in
US courts? What influence would this have on the probability
of making a type II error?

Check your answer

To lower the type I Error rate, we might raise our standard
for conviction from “beyond a reasonable doubt” to “beyond a
conceivable doubt” so fewer people would be wrongly convicted.
However, this would also make it more difficult to convict the
people who are actually guilty, so we would make more type II
Errors.

Exercise 4

How could we reduce the probability of making a type II error
rate in US courts? What influence would this have on the
probability of making a type I error?

Check your answer

To lower the type II Error rate, we want to convict more guilty
people. We could lower the standards for conviction from “be-
yond a reasonable doubt” to “beyond a little doubt”. Lowering
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the bar for guilt will also result in more wrongful convictions,
raising the type I Error rate.

The example and guided practice above provide an important
lesson: if we reduce how often we make one type of error, we
generally make more of the other type. This threshold for how
much evidence is require is called the significance level.

Significance level, 𝛼 A number between 0 and 1 that serves
as the threshold for the p-value. The null hypothesis is
rejected when the p-value < 𝛼, and the finding is found
“statistically significant”.

By convention, 𝛼 = 0.05, however you should adjust the signif-
icance level based on the application. Certain scientific fields
might tend to use a slightly higher or lower threshold for what
constitutes statistical significance. In a setting where the de-
cisions have very different real-world consequences, those, too,
can factor into the choice of 𝛼.

If making a type I error is dangerous or especially costly, you
should choose a small significance level (e.g., 0.01 or 0.001).
If you want to be very cautious about rejecting the null hy-
pothesis, you should demand very strong evidence favoring the
alternative 𝐻𝐴 before we would reject 𝐻0.
If a type II error is relatively more dangerous or much more
costly than a type I error, then we should choose a higher sig-
nificance level (e.g., 0.10). Here we want to be cautious about
failing to reject 𝐻0 when the null is actually false.

Example: Blood Thinners and Survival

Cardiopulmonary resuscitation (CPR) is a procedure used on
individuals suffering a heart attack when other emergency re-
sources are unavailable. This procedure is helpful in providing
some blood circulation to keep a person alive, but CPR chest
compression can also cause internal injuries. Internal bleeding
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and other injuries that can result from CPR complicate addi-
tional treatment efforts. For instance, blood thinners may be
used to help release a clot that is causing the heart attack once
a patient arrives in the hospital. However, blood thinners neg-
atively affect internal injuries.

Here we consider an experiment with patients who underwent
CPR for a heart attack and were subsequently admitted to
a hospital. Each patient was randomly assigned to either re-
ceive a blood thinner (treatment group) or not receive a blood
thinner (control group). The outcome variable of interest was
whether the patient survived for at least 24 hours.

Exercise 5

Form hypotheses for this study in plain and statistical language.
Let 𝑝𝐶 represent the true survival rate of people who do not
receive a blood thinner (corresponding to the control group)
and 𝑝𝑇 represent the survival rate for people receiving a blood
thinner (corresponding to the treatment group).

Check your answer

We want to understand whether blood thinners are helpful or
harmful. We’ll consider both of these possibilities using a two-
sided hypothesis test.

• 𝐻0 ∶ Blood thinners do not have an overall survival effect,
i.e., the survival proportions are the same in each group.
𝑝𝑇 − 𝑝𝐶 = 0.

• 𝐻𝐴 ∶ Blood thinners have an impact on survival, either
positive or negative, but not zero. 𝑝𝑇 − 𝑝𝐶 ≠ 0.

Note that if we had done a one-sided hypothesis test, the re-
sulting hypotheses would have been:

• 𝐻0 ∶ Blood thinners do not have a positive overall survival
effect, i.e., the survival proportions for the blood thinner
group is the same or lower than the control group. 𝑝𝑇 −
𝑝𝐶 < 0.

• 𝐻𝐴 ∶ Blood thinners have a positive impact on survival.
𝑝𝑇 − 𝑝𝐶 > 0.
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There were 50 patients in the experiment who did not receive a
blood thinner and 40 patients who did. The study results are
shown in the table below.

Table 1: Results for the CPR study. Patients in the treatment
group were given a blood thinner, and patients in the
control group were not.

Group Died Survived Total
Control 39 11 50
Treatment 26 14 40
Total 65 25 90

Exercise 6

What is the observed survival rate in the control group? And in
the treatment group? Also, provide a point estimate ( ̂𝑝𝑇 − ̂𝑝𝐶)
for the true difference in population survival proportions across
the two groups: 𝑝𝑇 − 𝑝𝐶.
Check your answer

Observed control survival rate: ̂𝑝𝐶 = 11
50 = 0.22. Treatment

survival rate: ̂𝑝𝑇 = 14
40 = 0.35. Observed difference: ̂𝑝𝑇 − ̂𝑝𝐶 =

0.35 − 0.22 = 0.13.

According to the point estimate, for patients who have under-
gone CPR outside of the hospital, an additional 13% of these pa-
tients survive when they are treated with blood thinners. How-
ever, we wonder if this difference could be easily explainable by
chance, if the treatment has no effect on survival.

As we did in the past study, we will simulate what type of
differences we might see from chance alone under the null hy-
pothesis. By randomly assigning each of the patient’s files to
a “simulated treatment” or “simulated control” allocation, we
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get a new grouping. If we repeat this simulation 1,000 times,
we can build a null distribution of the differences shown in the
figure below.
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Figure 1: Null distribution of the point estimate for the differ-
ence in proportions, ̂𝑝𝑇 − ̂𝑝𝐶. The shaded right tail
shows observations that are at least as large as the
observed difference, 0.13.

The right tail area is 0.135. (Note: it is only a coincidence
that we also have ̂𝑝𝑇 − ̂𝑝𝐶 = 0.13.) However, contrary to how
we calculated the p-value in previous studies, the p-value of
this test is not actually the tail area we calculated, i.e., it’s not
0.135!

The p-value is defined as the chance of a test statistic as extreme
or even more extreme than the one observed under the assump-
tions of the null hypothesis. Importantly, “more extreme” is
defined based on the alternative hypothesis. If the alternative
hypothesis suggests a two-sided test, then you must be open to
deviations in either direction.

In this case, any differences less than or equal to -0.13 would
also provide equally strong evidence favoring the alternative
hypothesis as a difference of +0.13 did. A difference of -0.13
would correspond to 13% higher survival rate in the control
group than the treatment group. In the figure below we have
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also shaded these differences in the left tail of the distribution.
These two shaded tails provide a visual representation of the
p-value for a two-sided test.
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Figure 2: Null distribution of the point estimate for the differ-
ence in proportions, ̂𝑝𝑇 − ̂𝑝𝐶. All values that are at
least as extreme as +0.13 but in either direction away
from 0 are shaded.

For a two-sided test, take the single tail (in this case, 0.131)
and double it to get the p-value: 0.262. Since this p-value is
larger than 0.05, we do not reject the null hypothesis. That is,
we do not find convincing evidence that the blood thinner has
any influence on survival of patients who undergo CPR prior
to arriving at the hospital.

Generally, to find a two-sided p-value we double the single tail
area, which remains a reasonable approach even when the dis-
tribution is asymmetric. However, the approach can result in
p-values larger than 1 when the point estimate is very near the
mean in the null distribution; in such cases, we write that the p-
value is 1. Also, very large p-values computed in this way (e.g.,
0.85), may also be slightly inflated. Typically, we do not worry
too much about the precision of very large p-values because
they lead to the same analysis conclusion, even if the value is
slightly off.
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Tip

Default to a two-sided test.
We want to be rigorous and keep an open mind when we
analyze data and evidence. Use a one-sided hypothesis
test only if you truly have interest in only one direction.

Tip

Computing a p-value for a two-sided test.
First compute the p-value for one tail of the distribu-
tion, then double that value to get the two-sided p-value.
That’s it!

Controlling the Type I Error rate

Now that we understand the difference between one-sided and
two-sided tests, we must recognize when to use each type of test.
Because of the result of increased error rates, it is never okay
to change two-sided tests to one-sided tests after observing the
data. Let’s explore the consequences of ignoring this advice.

Suppose we are interested in finding any difference from 0.
We’ve created a smooth-looking null distribution representing
differences due to chance in the figure below.

Suppose the sample difference was larger than 0. Then if we can
flip to a one-sided test, we would use 𝐻𝐴 ∶ difference > 0. Now
if we obtain any observation in the upper 5% of the distribution,
we would reject 𝐻0 since the p-value would just be a the single
tail. Thus, if the null hypothesis is true, we incorrectly reject
the null hypothesis about 5% of the time when the sample mean
is above the null value, as shown in the figure.

Suppose the sample difference was smaller than 0. Then if we
change to a one-sided test, we would use 𝐻𝐴 ∶ difference < 0.
If the observed difference falls in the lower 5% of the figure, we
would reject 𝐻0. That is, if the null hypothesis is true, then we
would observe this situation about 5% of the time.
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By examining these two scenarios, we can determine that we
will make a type I error 5% + 5% = 10% of the time if we are
allowed to swap to the “best” one-sided test for the data. This
is twice the error rate we prescribed with our significance level:
𝛼 = 0.05 (!).

−3 −2 −1 0 1 2 3

5% 5%

Figure 3: The shaded regions represent areas where we would
reject 𝐻0 under the bad practices considered in when
𝛼 = 0.05.

Caution

Hypothesis tests should be set up before seeing the
data.
After observing data, it is tempting to turn a two-sided
test into a one-sided test. Avoid this temptation. Hy-
potheses should be set up before observing the data.

Power

Often times in planning a study there are two competing con-
siderations:

• We want to collect enough data that we can detect im-
portant effects but…

• Collecting data can be expensive in terms of money, time,
and suffering, so we want to minimize the amount of data
we collect.
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As an example, imagine you are working to develop a new drug
to reduce to size of tumors and you would like to test the effec-
tiveness of the drug on mice. The more data that you collect,
the greater your ability to detect even slight reductions in tu-
mor size due to your drug. But more is data is not always
better. Here, collecting data means paying researchers and sac-
rificing mice, so there is a cost, both financial and ethical, to
collecting more data.

One way to balance these two competing needs is to frame the
problem as follows: what is the smallest sample size that I
would need to have a high probability of detecting an effect of
the drug, if it is in fact effective? This probability is a vital
consideration when planning a study. It is called the statistical
power of the test.

Power The probability of rejecting the null hypothesis when
the null hypothesis is false This probability depends on
how big the effect is (e.g., how good the medical treatment
is) as well as the sample size.

Statistical power is a good thing: the more power that you
have, the lower the chance that you’ll make a decision error.
But what kind exactly?

Exercise 7

Review the definitions of Type I and Type II error at the begin-
ning of these notes. How does the concept of power relate math-
ematically to the probability of committing these two types of
errors?

Check your answer

The power is directly related to the concept of a Type II error,
failing to reject a null hypothesis that is false. Since the power
is the probability of correctly rejecting a null hypothesis that
is false, it can be calculated as one minus the probability of a
Type II error. The probability of committing a Type II error
is often assigned the Greek letter beta, 𝛽, therefore you will
sometimes see power written as 1 − 𝛽.
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In the example of the mouse study, if we collected very little
data and the effect of our drug is very slight, then it’s conceiv-
able that our power could be very very low, in the neighborhood
of 10%. This means that there was only a 10% chance of that
we’d be able to detect an effect of our drug. In this case, it
could be argued that the design of our study was unethical
because the mice that we studied were sacrificed in vain.

On the other hand, if we used 100,000 mice in our study, then
the power would be very very high, say 99.99%. That is good,
because we’re quite certain that we’d be able to detect an effect
if it exists. But it would also be considered unethical because
we sacrificed many mice unnecessarily. It is possible that we
could have had almost as high a power, say 90%, with only 400
mice.

Calibrating the appropriate sample size that achieves a high
enough statistical power - 80% or 90% - without incurring un-
necessary costs is challenging work that is beyond the scope of
this class. But the concept of power is essential to good science,
so it’s important to be aware of. Whenever you come across a
study that has a high p-value (that is, they failed to reject the
null hypothesis), ask yourself: is it possible that this is just a
low-powered study?

Summary

Although hypothesis testing provides a framework for making
decisions based on data, as the analyst, you need to understand
how and when the process can go wrong. That is, always keep
in mind that the conclusion to a hypothesis test may not be
right! Sometimes when the null hypothesis is true, we will
accidentally reject it and commit a type I error; sometimes
when the alternative hypothesis is true, we will fail to reject
the null hypothesis and commit a type II error. The power
of the test quantifies how likely it is to obtain data which will
reject the null hypothesis when indeed the alternative is true;
the power of the test is increased when larger sample sizes are
taken.
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