
Hypothesis Tests II
Simulating the null by taking draws

Hypothesis tests are a tool for assessing the consistency between
data and a proposed model for how the data was generated.
There are myriad hypothesis tests, but they all follow the same
basic structure.

1. Assert a model for how the data was generated (the null
hypothesis)

2. Select a test statistic that bears on that null hypothesis
(a mean, a proportion, a difference in means, a difference
in proportions, etc).

3. Approximate the sampling distribution of that statistic
under the null hypothesis (aka the null distribution)

4. Assess the degree of consistency between that distribution
and the test statistic that was actually observed (either
visually or by calculating a p-value)

In the last set of notes, we learned about one tool for step 3:
shuffling. When the null hypothesis asserts that two variables
have nothing to do with one another, then we can simulate
other possible data sets by shuffling one of the columns. This
approach, called a permutation test, is useful when one of the
variables defines two groups. In the case of Kristen Gilbert,
shuffling allowed us to simulate worlds where deaths in the ward
were just as likely as not to fall into the group of shifts when
Gilbert was working.

In these notes, you’ll learn a method for simulating data that
corresponds to a different class of null hypotheses. The method
will look familiar: it can be thought of as another version of
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the box model we used for random variables. Also familiar is
our first example: Benford’s Law and voting data from Iran.

Test of Many Proportions

2009 Presidential Election in Iran

In 2009, Iran held a presidential election where the incumbent,
Mahmoud Ahmadinejad, faced three challengers, Mohsen Rezai
and two allied members of the reformist opposition, Mehdi Kar-
roubi and Mir-Hussein Mousavi1. Leading up to the elections,
polling for Mousavi and Karroubi was strong; they were con-
sidered to present the first serious challenge to Ahmadinejad’s
governance. When the results of the election came in, any
hopes for an upset were dashed by an decisive victory for the
incumbent: Ahmadinejad received 62.6% of votes cast, Mousavi
33.75%, and Karroubi a bit above 1%.

Figure 1: From left to right: Rezai, Ahmadinejad, Karroubi,
and Mousavi.

Protests broke out among the supporters of Mousavi and Kar-
roubi, alleging that the results were fraudulent and manipu-
lated by the incumbent to remain in power. The protests grew
into the largest ever seen in the Republic of Iran and drew
the attention of governments, journalists, and election watch-
ers from across the world. One of these watchers, working from
Poland, conducted an analysis that purported to find irregular-
ities in the voting data2. They applied to the data a controver-
sial analytical approach: Benford’s Law.

Benford’s Law

Benford’s Law is a mathematical law that describes a partic-
ular distribution of the digits 1 through 9. It is often a good
approximation for the distribution of the first digits in sets of
naturally occurring numbers that span many orders of magni-
tude, for example in the population counts of cities. According
to Benford’s Law, the most common first digit should be a 1, at

1Image from Pyvand Iran News archives http://www.payvand.com/news
/09/jun/1085.html.

2Roukema, Boudewijn F. (2014). “A first-digit anomaly in the 2009 Ira-
nian presidential election”. Journal of Applied Statistics. 41: 164–199.
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a frequency of 0.3, followed by 2 at 0.18, and decreasing until
9 at 0.05.

This pattern has been thought to apply to the first digit counts
of voting data as well. The theory is that if the voting process is
fair, then the distribution of the first digit of vote counts across
different municipalities should follow Benford’s Law. Fraudu-
lent activity such as ballot-stuffing, would materialize as devi-
ations from Benford’s Law.
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The election watchers studying the voting data from Iran no-
ticed an anomaly in the distribution of first digits of vote counts
for Karroubi (above right). The digit 7 was unexpectedly com-
mon, far more common than would be expected based on Ben-
ford’s Law. Is this evidence of voter fraud? Could this anomaly
be just be due to chance?

Taking Draws from the Null

One way to frame this analysis is as a hypothesis test. Under
the null hypothesis, the first digit distribution of Karroubi’s
vote counts was generated according to Benford’s Law. We
can state this in the language of parameters, where 𝑝𝑖 is the
probability that a vote count has 𝑖 as the first digit.

𝐻0 ∶ 𝑝1 = .301, 𝑝2 = .176, 𝑝3 = .125, 𝑝4 = .097, 𝑝5 = .079, 𝑝6 = .067, 𝑝7 = .058, 𝑝8 = .051, 𝑝9 = .046
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The alternative hypothesis is that the first digits were drawn
according to a different distribution (at least one of the 𝑝1 is
different).

This null hypothesis describes everything we need to simulate
the sort of data that we would observe in a world where first
digits are drawn accordng to Benford’s Law. For this simula-
tion, we can use the metaphor of a box with tickets. In our box
we place 1000 tickets. 301 of them have the number 1 on them,
176 of them have the number 2, and so on until the 46 tickets
that have the number 9. We can simulate one first digit from
the vote count of one municipality by drawing a single ticket
with replacement. To simulate a process akin to the voting
data from Iran, we would draw 366 tickets with replacement,
one for each municipality.

While we could indeed do this process by hand (sacrificing both
index cards and time), we will opt instead to use a computer.
Below are nine different first digit distributions that we might
see in a world where the first digits follow Benford’s Law.

library(infer)

p_benfords <- c("1" = log10(1 + 1/1),
"2" = log10(1 + 1/2),
"3" = log10(1 + 1/3),
"4" = log10(1 + 1/4),
"5" = log10(1 + 1/5),
"6" = log10(1 + 1/6),
"7" = log10(1 + 1/7),
"8" = log10(1 + 1/8),
"9" = log10(1 + 1/9))

set.seed(30)
draw_9 <- iran |>

specify(response = first_digit) |>
hypothesize(null = "point", p = p_benfords) |>
generate(reps = 9, type = "draw")

draw_9 |>
ggplot(aes(x = first_digit)) +
geom_bar() +
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facet_wrap(vars(replicate)) +
labs(x = "First Digit")
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We can see that there is some natural variation in the distri-
bution just due to chance. While the first sample of 366 digits
follows the decaying shape of Benford’s Law quite closely, the
sixth has an unusually large number of 3s. The fifth sample,
like the observed sample of Karroubi’s, has an unusually large
number of 7s.

At this point, we could conduct a very informal version of a
hypothesis test. Does the empirical distribution of Karroubi’s
first digits look like one of these nine distributions generated
according to Benford’s Law? It’s hard to say; the observed
distribution is different from Benford’s Law. But how different
is different enough?

A Distance Statistic: 𝜒2

When we discern a particular structure in a plot, we can quan-
tify it precisely by calculating an appropriate summary statistic.
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If we’re looking at two box plots that are shifted from one an-
other, we can calculate a difference in medians. If we’re looking
at a scatter plot with a linear association, we can calculate a
correlation coefficient.

Here, the structure that we’re considering is the difference be-
tween two bar charts: the distribution according to Benford’s
Law (above left) and the empirical distribution of Karroubi’s
first digts (above right). There are several different statistics
that could collapse this visual information into a single number.
The most commonly used is the chi-squared statistic.

Chi-squared Statistic A statistic used to measure the distance
between two categorical distributions, one observed and
one expected. For a distribution with 𝑘 categories, 𝑂𝑖
observed counts in each category, and 𝐸𝑖 expected counts,

𝜒2 =
𝑘

∑
𝑖=1

(𝑂𝑖 − 𝐸𝑖)
2

𝐸𝑖

In our setting, index 𝑖 refers to each of the 9 digits. We
could find the first term in the sum by taking the difference
between the observed count of 1s, 𝑂1 = 125, and the count
we would expect if those 366 digits followed Benford’s Law,
𝐸1 = 366 × .301 = 110.166. That difference 𝑂1 − 𝐸1 =
125 − 110.166 = 14.834 captures the difference in the heights
of the bars corresponding to 1 in the two bar charts. To com-
plete that first term in the sum, we square it (to treat negative
differences the same as positive differences) and then we divide
that by 𝐸1 (so that the squared differences are relative to the
height of that particular bar).

This process is repeated for each of the 9 digits, then the result
added up to a single statistic. We’ll save the tedious arithmetic
and let R calculate the chi-squared statistic that corresponds
to Karroubi’s first digit distribution.

obs_stat <- iran |>
specify(response = first_digit) |>
hypothesize(null = "point", p = p_benfords) |>
calculate(stat = "Chisq")
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[1] 28.0832

28! That tells us that the distance from Karroubi’s distribution
to Benford’s Law was 28! But . . . is 28 a lot? Or or a little?
We don’t have any natural scale on which to make meaning out
of this statistic.

We can however, compare this statistic to the statistics we
would see in a world where the null hypothesis is true. Here are
the chi-squared statistics for each of the 9 distributions above.
Look through them one-by-one: what sort of chi-squared statis-
tic do you get for distributions that are very similar to Ben-
ford’s? What about for ones that look different?

replicate stat
1 9.517228
2 8.122086
3 3.235929
4 3.647709
5 10.673920
6 17.632670
7 9.761574
8 6.901445
9 8.396731

This mode of thinking allows us to put our observed statistic of
28.1 into context. It is quite a bit larger than any of the nine
statistics that we generated in a world where the first digits
followed Benford’s Law. To be more thorough in our reasoning,
though, we need to look at more than just nine statistics. We
need to look at a full distribution of them.

Approximating the null distribution

We can repeat the simulation process used above 5000 times
and, for each of the 5000 simulated data sets, calculate a chi-
squared statistic. Those 5000 statistics form a null distribu-
tion.
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null <- iran |>
specify(response = first_digit) |>
hypothesize(null = "point", p = p_benfords) |>
generate(reps = 5000, type = "draw") |>
calculate(stat = "Chisq")

null |>
visualize() +
shade_p_value(obs_stat, direction = "right")

0

250

500

750

1000

1250

0 10 20 30
stat

co
un

t

Simulation−Based Null Distribution

We see that, in a world where first digits follow Benford’s Law,
while we would expect statistics around 8 or 9, it is possible
to observe very small chi-squared statistics near zero and ones
as high as about 20. The statistic that we actually observed
was 28.1, indicated by the red line. On the scale of the null
distribution, this is off the charts.

We can quantify the consistency between the observed statistic
and the null hypothesis by calculating a p-value. Formally, it
is estimated as the proportion of simulated null statistics that
are as extreme or more so than the one that you observed. In
this case, there are no statistics that matched or exceeded 28.1,
so the p-value is essentially zero.

Evidence of what?

A low p-value indicates that our data - Karroubi’s official vote
data out of Iran - is inconsistent with our null hypothesis - that
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Karroubi’s first digit counts follow Benford’s Law. But what
does that say about election fraud?

The controversy around the application of Benford’s Law in
situations like this centers on whether or not a fair election
would actually be expected to generate first digits that look
like Benford’s Law. Benford’s Law is a simple mathematical
abstraction and elections are very particular things, with each
one unfolding according to different policies and procedure, and
each one aggregated at different levels (precincts, cities, coun-
ties, etc.).

If you repeat this analysis on first digit distributions from US
elections, you’d find that some of them follow Benford’s Law
very well. Others found deviations even more extreme than
seen in Karroubi’s data. US election, for the most part are free
of the sort of fraud that would show up in these analyses, so
the appropriate conclusion is not that we detected evidence of
fraud but rather that Benford’s Law simply isn’t a good fit for
many of the processes that generate vote counts in elections.

This is an important lesson moving beyond descriptive statistics
and into generalizations. When you lay out the null hypothe-
sis, you are describing a complicated real world process with a
simplified explanation. The success of that generalization de-
pends in large part on the degree to which this simplification
preserves the most important features of reality3.

One Tail or Two?

In the United States vs. Kristen Gilbert, the null hypothesis
that the statisticians operated under was that Gilbert was in-
nocent. More specifically, it asserted that the occurrence of a
death on a shift at the hospital was independent of whether
or not Gilbert was working. This hypothesis can be stated in
terms of parameters; that the probability of a death on a shift
with Gilbert present is equal to the probability of a death on a
shift without her present.

3For more conversation around the application of Benford’s Law to the
election in Iran (and elections in general), see a blog post by Andrew
Gelman, a professor of statistics at Columbia University: Unconvincing
(to me) use of Benford’s law to demonstrate election fraud in Iran.
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• 𝐻0: 𝑝𝑔𝑖𝑙𝑏𝑒𝑟𝑡 − 𝑝𝑛𝑜 𝑔𝑖𝑙𝑏𝑒𝑟𝑡 = 0

There are actually three different ways that the statisticians
could have set up their alternative hypotheses.

1) 𝐻𝐴: 𝑝𝑔𝑖𝑙𝑏𝑒𝑟𝑡 − 𝑝𝑛𝑜 𝑔𝑖𝑙𝑏𝑒𝑟𝑡 < 0
2) 𝐻𝐴: 𝑝𝑔𝑖𝑙𝑏𝑒𝑟𝑡 − 𝑝𝑛𝑜 𝑔𝑖𝑙𝑏𝑒𝑟𝑡 ≠ 0
3) 𝐻𝐴: 𝑝𝑔𝑖𝑙𝑏𝑒𝑟𝑡 − 𝑝𝑛𝑜 𝑔𝑖𝑙𝑏𝑒𝑟𝑡 > 0

The first version seems surprising: we’re entertaining an alter-
nate explanation where in fact fewer deaths would have oc-
curred on Gilbert’s shifts. The second version is the one that
we used in the previous notes: that it’s possible either more or
fewer deaths occurred on Gilbert’s shifts.

The third version is very tempting. It disregards the extra al-
ternative (that Gilbert could be associated with fewer deaths)
and that seems natural since the data pointed in the opposite
direction. However, there are two dangers if we ignore possibil-
ities that disagree with our data or that conflict with our world
view:

• Framing an alternative hypothesis simply to match the
direction that the data point will inflate the type I error
rate. After all the work we have done (and will continue
to do) to rigorously control the error rates in hypothesis
tests, careless construction of the alternative hypotheses
can disrupt that hard work.

• If we only use alternative hypotheses that agree with our
worldview, then we are going to be subjecting ourselves
to confirmation bias, which means we are looking for data
that supports our ideas. That’s not very scientific, and
we can do better!

The alternative hypotheses found in 1) and 3) define what are
called one-sided hypothesis tests (also called “one-tailed”)
because they only explore one direction of possibilities. Such
hypotheses are appropriate when we are exclusively interested
in the single direction, but usually we want to consider all pos-
sibilities. A better approach is to use two-sided hypothesis
tests (also called “two-tailed”), defined by hypotheses in the
form of 2).
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The chi-squared test used for the Iran elections is an unusual
case where the one-sided test is appropriate. The left tail of
that distribution contains statistics that indicate strong consis-
tency with the null hypothesis, so only the right tail is used to
calculate the p-value.

The Significance Level

If it is necessary to make a binary decision based on a p-value,
it must be decided beforehand what level of evidence is needed
before you would rule out the null hypothesis.

Significance level, 𝛼 A number between 0 and 1 that serves
as the threshold for the p-value. The null hypothesis is
rejected when the p-value < 𝛼, and the finding is found
“statistically significant”.

By convention, 𝛼 = 0.05, however you should adjust the signif-
icance level based on the application. Certain scientific fields
might tend to use a slightly higher or lower threshold for what
constitutes statistical significance. In a setting where the de-
cisions have very different real-world consequences, those, too,
can factor into the choice of 𝛼.

Summary

In these notes you learned about a second form of null hypothe-
sis, one where you explicitly define the proportions of a categori-
cal variable. This type of null hypothesis allows you to generate
data through simulating the process of drawing tickets from a
box that is designed to match your null hypothesis. The most
common test statistic used in this scenario is the chi-squared
statistic, which measures the distance between two categorical
distributions. Just as in the permutation tests from last time,
you can assess the consistency between the null hypothesis and
your data by calculating a p-value: the probability of drawing
a statistic as or more extreme than the one that you observed
in a world where the null hypothesis is true.
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