
Bootstrapping
Another Approach to Confidence Intervals

The confidence intervals we created in the last set of notes relied
upon the normal distribution to build an interval to capture a
population parameter with a particular confidence. Hopefully
the thought-experiments assured you that sampling distribu-
tions often follow a bell-shaped distribution, so the use of the
normal distribution was justified. If you’re itching for a formal
explanation for why the sampling distribution will follow a nor-
mal distribution, this is precisely the role of one of the most
central mathematical results in statistics: the Central Limit
Theorem.

The Central Limit Theorem says, in brief, that sums of ran-
dom variables will follow a normal distribution as the sample
size grows large1. A vast array of useful statistics - means,
proportions, differences in two means, differences in two pro-
portions - can be cast as sums of random variables, so at large
sample sizes we can be confident that the normal distribution is
a good approximation of the sampling distribution. But what
happens when you’re looking at a statistic that cannot be cast
as a sum of random variables? What if your sample size is not
large? How else can you approximate the sampling distribution
of a statistic?

Until several decades ago, the toolbox for answering these ques-
tions was limited. With the advent of powerful computers and
a brilliant and simple insight into the relationship between the

1If you’re curious about the mathematical underpinnings of the Central
Limit Theorem, read the corresponding Wikipedia page and enroll in
an upper division course in probability and mathematical statistics.

1

https://en.wikipedia.org/wiki/Central_limit_theorem

sample and the population, however, we have a new tool for
assessing sampling variability. That tool is the bootstrap.

The Bootstrap

The bootstrap is based on the observation that if your sample
is representative of the population, then the empirical distribu-
tion should be a good stand-in for the population distribution.
One can then simulate the process of drawing multiple samples
from the population by drawing new samples (called resamples)
from the empirical distribution.

The Bootstrap Algorithm A procedure used to assess sam-
pling variability in statistics. To bootstrap a statistic,

1. Treat the sample as a bootstrap population
2. Draw a new sample (with replacement) from the

bootstrap population

2

3. Calculate the statistic of interest on the new sample
4. Repeat steps 2 and 3 many times to build up a boot-

strap sampling distribution

The name of the procedure is derived from the idiom, “to pull
yourself up by your own bootstraps”. This illustrates the some-
what miraculous nature of this procedure. While in reality you
only ever get to see a single sample drawn from the popula-
tion, the bootstrap allows you to use that sample to generate
many more samples through the process of sampling with re-
placement.

To illustrate this procedure, consider the toy example below,
where we aim to estimate the sampling variability in calculating
a proportion using a sample of size 𝑛 = 5 penguins.

On the left is the data frame containing the original sample
containing one column of the names that identify each unit
and a second column with the variable of interest, a variable
generically called 𝑋 that takes values 1 and 0. The observed
statistic in this data frame is ̂𝑝 = 2/5. This original sample
will serve as the bootstrap population.

3

In step two of the algorithm, we draw a sample of size 𝑛 = 5
from the bootstrap population, with replacement. This first
bootstrap sample is shown at the top and features Ida, Gus,
Abe, Gus again, and Ola. This is an important feature of sam-
pling with replacement: some units might be drawn multiple
times (Gus) and others might not be drawn at all (Luz). From
this first bootstrap sample, we can compute the first bootstrap
statistic ̂𝑝𝑏1 = 1/5. This is step three.

For step four we repeat this process of drawing a bootstrap
sample and calculating another bootstrap statistic. In the di-
agram, two additional statistics are calculated, but in practice
this process will be repeated many many times. The result of
this procedure is the bootstrap distribution, on the right, which
is the collection of all of the statistics you observed across the
different bootstrap samples.

Note this just a toy example. With 𝑛 = 5, the sample is unlikely
to represent the important features of the population, and the
bootstrap should not be applied. At a more reasonable sample
size, however, this bootstrap distribution will become a good
approximation of the sampling distribution and therefore can
be used to calculate a confidence interval.

Bootstrap Confidence Interval (percentile method) For a
95% confidence interval, the interval spans the middle
95% of the bootstrap statistics which is equivalent to
finding the 2.5% and 97.5% quantiles of the bootstrap
distribution. The confidence level can be adapted by
modifying the quantiles accordingly.

Let’s see the bootstrap in practice in two settings with two very
different statistics.

Example 1: Food Safety Scores

Let’s create the bootstrap sampling distribution for the ex-
ample of food safety scores from the earlier notes on confi-
dence intervals. In this example, we looked at a sample of 100
food safety scores drawn from all restaurants in San Francisco.
When bootstrapping, that empirical distribution becomes the
bootstrap population.

4

0

3

6

9

60 80 100
Food Safety Scores

D
en

si
ty

Bootstrap Population

Next, to approximate the bootstrap sampling distribution, we
proceed with a simulation. We take a sample of 100, this time
with replacement, from the bootstrap population, and we com-
pute the mean food safety score. This process gets repeated 500
times, and the distribution of the 500 bootstrap means gives us
an estimate of the bootstrap sampling distribution.

The bootstrap sampling distribution looks like the following.
This approach to bootstrapping uses
the infer R package. Details of its
use can be found in the Ideas in
Code section at the end of these
notes.

0

10

20

84 85 86 87 88 89
Average Food Safety Scores for a SRS of 100

D
en

si
ty

Bootstrap Sampling Distribution

5

A few things to note about this bootstrap sampling distribu-
tion:

• The overall shape of the bootstrap sampling distribution
mirrors the general shape of the true sampling distribu-
tion from the last notes.

• The mean of the sampling distribution, 86.23, nearly
matches the mean of the bootstrap population, 86.27,
which in turn matches the original sample mean. But, it
does not quite match the mean of the original population,
87.6.

• The SE of the bootstrap sampling distribution, 0.99,
matches the SD(bootstrap pop)/

√
100, which is also 0.99.

This bootstrapped SE is a decent estimate of the SE of
the true sampling distribution, 0.89.

To form a 95% confidence interval for the population mean,
we can find the quantiles that mark off the middle 95% of the
bootstrap distribution. For the distribution above, this would
be:

A tibble: 1 x 2
lower_ci upper_ci

<dbl> <dbl>
1 84.4 88.0

If we compare this confidence interval to the one we created
using the normal curve, it matches exactly (when rounded to
the nearest tenths place). This is because we’re in a setting
where the sample size is large enough for the sample to be a
good stand-in for the population (so the bootstrap is accurate)
and also large enough for the Central Limit Theorem to kick in
(so the normal approximation is also accurate).

Next we provide an example where we truly don’t know the pop-
ulation and where we need a confidence interval for a statistic
that’s a bit more complex than the mean.

6

Example 2: Adelie Penguins’ Body Mass

We wish to develop a model for the body mass of a penguin
as a function of its other body measurements. Since the three
kinds of penguins have quite different body mass distributions,
we restrict ourselves to the Adelie penguins.

The best one-variable linear model to fit body mass is the model
that explains a penguin’s body mass based on its sex. This
model has an 𝑅2 of 0.54. But, when we add information about
the penguin’s flipper length, the model does improve somewhat.
The coefficients of the model with sex and flipper length as
explanatory variables for body mass is:

Call:
lm(formula = body_mass_g ~ sex + flipper_length_mm, data = penguins_adelie)

Coefficients:
(Intercept) sexmale flipper_length_mm

305.09 599.34 16.31

Recall that this model is equivalent to fitting two parallel lines,
one for each sex. Below is a scatter plot of body mass and
flipper length with the two fitted lines added.

3000

3500

4000

4500

170 180 190 200 210
flipper_length_mm

bo
dy

_m
as

s_
g

sex

female

male

7

The lines aren’t particularly steep in slope. If the researchers
went out and collected another set of data on the penguins, we
would expect the relationship between body mass and flipper
length to be roughly the same, but not exactly the same. The
scatter plot would look a bit different, and the slope of these
parallel lines would be a bit different too.

Suppose we want to make an inference about the true slope of
these lines. That is, we want to make an inference for all of the
penguins in Antarctica about the coefficient for flipper length
in the model:

body mass ~ sex + flipper length

The linear model that we fitted on the Adelie penguins col-
lected for the research study gives us a point estimate for this
coefficient, but a confidence interval has an added advantage.
A confidence interval incorporates the variability in the point
estimate. If 0 were found to be in the confidence interval, then
it calls into question whether there is a relationship between
flippter length and body mass when controlling for sex.

How can we find a confidence interval for the coefficient of flip-
per length?

Let’s return to the box model and the associated thought-
experiment. We would describe the box as:

• one ticket for every Adelie penguin in Antarctica
• each ticket has the penguin’s body mass, flipper length,

and sex written on it (we are ignoring the other measure-
ments)

• the number of tickets in the box is unknown, but it is
known to be a large number that is thought to be over
100,000.

• the population distribution of each variable (body mass,
flipper length, and sex) is unknown

• the joint population distribution of how these three mea-
surements vary together is also unknown

Since we are missing all of this information about the popu-
lation, we use the bootstrap. What does that mean in this
situation?

8

• The data frame for the 146 Adelie penguins is our boot-
strap population.

• To sample from the bootstrap population we choose rows
from the data frame at random with replacement.

• The bootstrap statistic is the coefficient for flipper length
from fitting the linear model on a bootstrap sample.

• The bootstrap sampling distribution is the probability dis-
tribution of the bootstrap statistic.

Let’s simulate the bootstrap sampling distribution with 500
rounds of drawing 146 penguins with replacement from the data
frame. For each bootstrap sample of 146 penguins, we fit the
linear model and retrieve the coefficient for flipper length. The
resulting bootstrap sampling distribution of the coefficient for
flipper length looks like the following.

0.00

0.05

0.10

0.15

5 10 15 20 25
Coefficient for Flipper Length

D
en

si
ty

Bootstrap Sampling Distribution

Notice that the distribution looks roughly normal. This is in
part because the sample size is reasonably large and the coeffi-
cient from a linear model is an average of sorts.

We can make a 99% bootstrap confidence interval by finding
the 0.5th percentile and the 99.5th percentile of the bootstrap
sampling distribution.

A tibble: 1 x 2
lower_ci upper_ci

9

<dbl> <dbl>
1 8.04 26.8

While the confidence interval is quite wide, running from 8.04
to 26.82, it does not contain 0. This implies that information
about the flipper length is a reasonable addition to the model
for body mass.

Summary

In these notes, we have introduced the bootstrap as a technique
for approximating confidence intervals. The bootstrap is a pow-
erful tool, but it is important to keep in mind that it is not a
cure-all. Here are some cautions about using the bootstrap:

• While a SRS (and other random mechanisms for selecting
data) typically gives us representative data, that is not al-
ways the case. We may be unlucky and get an oddball
sample. The bootstrap cannot recover from this problem.
The bootstrap population will not look like the true pop-
ulation, and so the bootstrap sampling distribution will
not be useful. Unfortunately, we don’t know when this
is happening. However, this is usually not a problem for
large samples.

• The bootstrap works well when the statistic is a mean, or
something like a mean, such as a regression coefficient or
a standard deviation. The bootstrap tends to have dif-
ficulties when the statistic is influenced by outliers, the
parameter is based on extreme values of a population dis-
tribution, or the sampling distribution of the statistic is
far from bell-shaped.

• The bootstrap cannot overcome a lack of randomness in
the selection of the sample. The process of taking a boot-
strap sample needs to mimic the selection process for tak-
ing the original sample. If a sample was not selected by a
random process or the sample was chosen by a more com-
plex process than the one used in bootstrapping, then the
bootstrap can fail.

10

• A rule of thumb for the number of resamples needed for a
reasonable bootstrap distribution is 10,000, however for
the use of this class, use 500. Too few bootstrap samples
can create problems for getting a good bootstrap sam-
pling distribution.

—————————

The Ideas in Code

These notes utilize several functions from the infer library,
which can be used to calculate confidence intervals and conduct
hypothesis tests. It can be loaded with library(infer).

With infer, each step in the bootstrap procedure is controlled
by one of four functions.

For a comprehensive list of templates that you can use to form
intervals, see the online documentation: https://infer.netlify.
app/articles/observed_stat_examples.html.

11

https://infer.netlify.app/articles/observed_stat_examples.html
https://infer.netlify.app/articles/observed_stat_examples.html

specify()

The specify function allows you to specify which column of a
data frame you are using as your response variable (your vari-
able of interest). When looking at the relationship between two
variables you will specify both the response and the explana-
tory variables. As such, the main arguments are response and
explanatory.

penguins |>
specify(response = bill_length_mm)

Response: bill_length_mm (numeric)
A tibble: 342 x 1

bill_length_mm
<dbl>

1 39.1
2 39.5
3 40.3
4 36.7
5 39.3
6 38.9
7 39.2
8 34.1
9 42

10 37.8
i 332 more rows

Observe that the output of specify is essentially the same data
frame that went in. the only difference is that bill_length_mm
is tagged as the response variable. That will be useful for down-
stream functions.

generate()

The generate function generates many replicate data frames
using simulation, the bootstrap procedure, or shuffling. Note
that it must follow specify() so that it knows which column(s)
to use.

Useful functions include:

12

https://infer.netlify.app/reference/specify.html
https://infer.netlify.app/reference/generate.html

• reps: the number of data set replicates to generate. Gen-
erally set this to 500 when making confidence intervals.

• type: the mechanism used to generate new data. Either
"bootstrap", "draw", or "permute".

penguins |>
specify(response = bill_length_mm) |>
generate(reps = 2, type = "bootstrap")

Response: bill_length_mm (numeric)
A tibble: 684 x 2
Groups: replicate [2]

replicate bill_length_mm
<int> <dbl>

1 1 51.3
2 1 41.1
3 1 46.2
4 1 48.6
5 1 43.2
6 1 47.5
7 1 38.1
8 1 44
9 1 42.4

10 1 35.9
i 674 more rows

Observe:

• the output data frame has two columns, replicate,
which keeps track of the replicate (1 or 2 here) and
bill_length_mm.

• the number of rows in the resulting data frame is the
𝑛×𝑟𝑒𝑝𝑠, so this data frame is contains all of the bootstrap
replicate stapled together one on top of another.

calculate()

The third link in an infer pipeline is the calculate function,
which calculates a single summary statistic for each replicate
data frame. The main argument is stat, which can take values

13

https://infer.netlify.app/reference/calculate.html

"mean", "median", "proportion", "diff in means", "diff
in props" and a few more.

penguins |>
specify(response = bill_length_mm) |>
generate(reps = 2, type = "bootstrap") |>
calculate(stat = "mean")

Response: bill_length_mm (numeric)
A tibble: 2 x 2

replicate stat
<int> <dbl>

1 1 43.5
2 2 44.2

Observe:

• The name of the summary statistic should be put in quo-
tation marks.

• The resulting data frame had reps rows, one statistic
from every replicate.

• The calculate function is a shortcut for an operation
you’re familiar with:

df %>%
group_by(replicate) %>%
summarize(mean(bill_length_mm))

fit()

If you would like to create bootstrapped coefficients for a linear
model, you’ll have to do something a bit different since there is a
more than 1 summary statistic involved for each replicate data
set. This is the role of fit(). There are no arguments to fill-in;
it inherits the formula for the linear model from specify().

14

penguins_adelie <- penguins |>
filter(species == "Adelie")

penguins_adelie |>
specify(body_mass_g ~ sex + flipper_length_mm) |>
generate(reps = 2, type = "bootstrap") |>
fit()

A tibble: 6 x 3
Groups: replicate [2]

replicate term estimate
<int> <chr> <dbl>

1 1 intercept 803.
2 1 sexmale 589.
3 1 flipper_length_mm 13.8
4 2 intercept 1731.
5 2 sexmale 729.
6 2 flipper_length_mm 8.72

Observe:

• The data frame has a number of rows equal to reps times
the number of coefficients in the linear model (in this case
2 × 3).

• To get the collection of all coefficients for flipper_length_mm,
for example, follow your infer pipeline with filter(term
== "flipper_length_mm").

drop_na()

This function drops rows that have missing values (NAs). Add as
arguments any variables you would like it to look to for missing
values. If no arguments are given it will drop a row if there is
a missing value in any column (Be ware of this behavior. It
might lead you to drop more rows that you mean to).

df <- data.frame(rank = c(2, 3, 1, 4, NA),
letter = c(NA, NA, NA, "d", "e"))

15

df |>
drop_na(rank)

rank letter
1 2 <NA>
2 3 <NA>
3 1 <NA>
4 4 d

df %>%
drop_na()

rank letter
1 4 d

16

	The Bootstrap
	Example 1: Food Safety Scores
	Example 2: Adelie Penguins' Body Mass

	Summary
	—————————
	The Ideas in Code

