From Samples to Populations

The bias and variance of moving from sample to
population.

Generalization is the process of using a subset of information to
draw conclusions about some broader set or phenomenon. It is
powerful - it allows us to draw conclusions about things we have
not observed - but it is tricky to do well. In these notes, you
will learn the sources of error that can creep in when making a
generalization.

There are four terms that you will see come up again and again
as we discuss generalization. They are familiar terms that have
tightly coupled meanings, so we present them together.

Sample The subset of units that are observed, measured, and
analyzed. Commonly referred to as a data set. The size
of the sample is indicated by n.

Population The set of units from which your sample is drawn.
The size of the population is indicated by N.

Statistic A numerical summary of a sample. Examples include
a sample mean, a sample median, a sample proportion,
a sample correlation coefficient, and an estimated coeffi-
cient of a linear model.

Population Parameter A numerical summary of a population.
Every statistic of a sample has an analog in the popula-
tion (population mean, population proportion, etc).

To see how these terms interrelate and to introduce the sources
of error that can creep in while generalizing from a sample to
a population, let’s look a scenario.



What year are my students?

On the first day of class, the professor strides into Pimentel
Hall to present a lecture to a new crop of students. If you have
not yet had the pleasure of having a class in Pimentel, it looks
like this.

Pimentel! is the second largest lecture hall at Cal with exactly
527 seats. On this first day of class, the room is packed and all
527 of the students registered for Stat 20 are in the hall.

Eager to ensure that the lecture is calibrated to the interest and
experience of the students, the professor seeks to learn how
many years they have been at Cal. The professor calls on a
student sitting in the middle of the front row and asks, “What
year are you at Cal?” The student replies, “sophomore”, so
the professor write 2 on the board. The professor proceeds to
repeat this question to all of the students sitting in the 18 seats
at the front row of Pimentel. By the end, there is a data frame
on the board with one column and 18 rows, the first three of
which read

Year

2
1
1

I Photo of Pimentel Hall by flickr
user TheRealMichaelMoore.



Ever the statistician, the professor then visualizes the distribu-
tion of data by sketching on the board a bar chart and jots
down the sample mean, which is 1.77.
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How good of an answer is 1.77 to the professors question of,
“What year are my students?”

Identifying the components

In this setting, the population is the set of all N = 527 students
in Pimentel. That is the set of units (students) that the profes-
sor seeks to understand and from which the sample is drawn.
The sample is the subset of n = 18 students who were sitting
in the front row and who were asked their year at Cal. The
sample mean, = 1.77, is an example of a statistic. Other
statistics that could be calculated from the sample include the
median (2) and the mode (1). These statistics be used to es-
timate their analogs in the population, such as the population
mean, . The value of p is what the professor seeks to learn,
but at this point is still unknown.

Using this terminology, we can ask the question again: how
good of an estimate of the mean year of the entire class is
the sample mean, 1.777 How much error did we incur when
generalizing and where did that error come from?



Sources of Error

To understand the forms that estimation error can take, con-
sider the analogy of darts thrown at a dart board. The center
of the dart board represents the parameter that we are trying
to hit and each dart that we throw represents a statistic calcu-
lated from a sample. There are two ways in which a dart throw
can miss the bullseye. One way is that we could systematically
tend to throw above and to the left of the bullseye. This form of
error is called bias. Another way that our dart-throwing could
miss the bullseye is if we are an erratic thrower and one throw
tends to be very different from this next. This form of error is
called variation or variability.
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If a sample is representative of the population, there is no bias
present. That is represented by the top row of bullseyes.

Types of Statistical Bias

Statistical bias comes in many forms. Here we describe two of
the most important types.



Selection bias When the mechanism used to choose units for
the sample tends to select certain units with a higher
probability than other units. That is, not all units in the
population are equally likely to be selected for the sample.

As an example, a convenience sample chooses the units that
are most easily available. Problems can arise when those who
are easy to reach differ in important ways from those harder
to reach. Another example of selection bias can happen with
observational studies and experiments. These studies often rely
on volunteers (people who choose to participate), and this self-
selection has the potential for bias if the volunteers differ from
the target population in important ways.

Measurement bias When your process of measuring a variable
systematically misses the target in one direction.

For example, low humidity can systematically give us incor-
rectly high measurements for air pollution. In addition, mea-
surement devices can become unstable and drift over time and
so produce systematic errors. In surveys, measurement bias can
arise when questions are confusingly worded or leading, or when
respondents may not be comfortable answering honestly.

Non-response bias When certain units originally selected for
the sample fail to provide data and those non-responders
different in meaningful ways from the responders. When
non-response is present, the final sample size for which
there is full data is less than the initial sample size.

All of these types of bias can lead to situations where the data
are not centered on the unknown targeted value. A common
method to address selection bias is to draw a simple random
sample, where each unit from the population is equally likely
to be drawn. A pilot survey can improve question wording and
so reduce measurement bias. In the lab sciences, procedures to
calibrate instruments and protocols to take measurements in
random order can reduce measurement bias. Non-response bias
can be addressed by providing incentives for participation.

Bias does not need to be avoided under all circumstances. If an
instrument is highly precise (low variance) and has a small bias,
then that instrument might be preferable to another that has



high variance and little to no bias. Biased studies can be useful
to pilot a survey instrument or to capture useful information
for the design of a larger study.

Statistical Bias in Pimentel

The method used by the professor likely suffers from statisti-
cal bias. The units that were drawn into the sample (the 18
students in the front row who were called on) constitute a con-
venience sample: they were sampled because they were easy to
sample. That is not necessarily a problem, but there is good
reason to think that students of all years are not equally likely
to sit in the front row. First year students, bright-eyed and
bushy-tailed with enthusiasm, will be more likely to sit in the
front row. If that is true, the professor incurred selection bias
that will lead to an estimate of the population mean that is too
low.

What about measurement bias? In this case, the process of
measuring a student’s year involves the act of asking them a
question, hearing their answer, and writing it on the board.
How could this be systematically in error? One way would be if
first year students occasionally lie about their year when asked,
for fear of being thought of as an over-eager over-achiever. If
this were true, then lots of the 2s that we recorded were in fact
1s, and the estimate of 1.77 would be too high.

What about non-response bias? This is likely not a problem
in this setting. While it can be easy to ignore a question that
appears in a survey that you get via email, it is much more dif-
ficult to dodge a question asked of you directly during class.

Types of Variation

Whether or not bias is present, data typically also exhibit vari-
ation.

Sampling variability If the sample is drawn from the popula-
tion with some amount of randomness, the sampling vari-
ability describes the variability from one sample to the
next.



Measurement variability When we take multiple measure-
ments on the same object and we get variations in
measurements from one sample to the next.

Variability in Pimentel

There is some amount of randomness that plays into which
units made their way into the professor’s sample of size 18. At
the start of a semester, students tend to sit in a different seat
each day they come to class. Even in a world were all students
are equally likely to sit in the first row (therefore there is no
bias), our sample of 1.77 might be too low because that day
an unusally high number of first year students happened to sit
in the front row, purely due to chance. The next day, perhaps
an unually high number of juniors would sit in the front row
and the estimate would leap up to, say, 2.7. This is sampling
variability.

Variability in measurement here would refer to a process by
which the recorded year for a student would differ from one
measurement to the next. Imagine a student who sits in the
front row on the first day and is recorded as a two That same
student sits in the front row on the 10th day and is recorded
as a one. It’s hard to imagine there being much measurement
variability here but you can imagine a very absent-minded pro-
fessor who, upon hearing the year, will sometimes immediately
forget what had been said and will record a random year.

The Sampling Distribution

One of the key concepts in understanding estimation errors
when using statistics is to understand the shape of the sampling
distribution of that statistic.

Sampling Distribution The distribution of a statistic upon re-
peated sampling.

Even though this distribution has an innocuous name, some-
thing big is happening with this definition. No longer are we
considering the (usually unknowable) distribution of the pop-
ulation or the observed distribution of the data (an empirical



distribution). The sampling distribution is a distribution of
a statistic, illustrating the different values that it could take,
along with the probability of getting each of those values in a
given sample.

Usually the sampling distribution is a hypothetical thing: what
would our statistic have looked like if we had taken a different
sample of data? We can make it concrete by working in a
setting where we can actually do just that.

Drawing Samples from Population

To understand the role that bias and variation play in estimates,
we will for the moment assume that we have access to the en-
tire population. This is almost never the case: if we had the
population, we wouldn’t need to bother with estimating it from
a sample! It is a very useful thought experiment, however. It
allows us to see the different ways that samples and statistics
can be drawn under different scenarios.

For this thought-experiment, we will will be drawing from a
population that has 527 observations / rows, one for every stu-
dent in Pimentel, with a population distribution of year that
looks like this.
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Scenario 1: Calling on the front row

In the data collection scheme used by the professor, the stu-
dents who happened to be sitting in the 18 seats at the front
of the class are the ones who will make it into the sample. As



discussed above, it is likely that this process will result in se-
lection bias since first year students tend to be more eager and
eager students tend to sit at the font of the class.

We can do our best to envision what this selection bias would
look like by selecting each student out of the population with
a probability that is proportional to their eagerness. Let’s say
first year students have an eagerness score of 10 out of 10, sopho-
mores have a 6, juniors a 3, and seniors a 1. Here are the first
5 rows of the population data frame with the eagerness scores
right next to the year of the student.

slice(pop_eager, 1, 2, 3, 4, 5)

year eagerness

1 3 3
2 2 6
3 2 6
4 1 10
5 2 6

When simulating the process that the professor used to draw
18 students, we can select the first student, a junior, with prob-
ability of 3 divided by the total eagerness of all of the students
(the sum of the eagerness column), which is 4900. The proba-
bility of that student (or any junior) is 3/4900 = 0.0006. That
is small, but that’s not surprising: there are 527 students in the
class, so the probability of selecting just one of them should be
small.

The probability of selecting the fourth student from the pop-
ulation data frame above, a first year, can be calculated as
10/4900 = .002. That’s also small, but it is 3.33 (10/3) times
the chance of selecting a junior. In this setting, we’re using
eagerness as a sampling weight to determine the relative prob-
ability of selecting more eager students into the sample.

Let’s now simulate the process of drawing 18 rows out of the
data frame of 527 rows, where each row is being selected with
a probability proportional to it’s eagerness. The three plots
along the top row of the plot below illustrate what the empirical



distribution of three samples might look like. They help us
envision what the professor’s plot on the board would look like
on three different days where the 18 students in the front row
were called on, and in each of those days, it is the first year
students who are most likely to end up the front row.
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As you look from Sample 1 to Sample 3, you notice that the
distribution of year varies from sample to sample. This is sam-
pling variability. If you compare these plots to the population
distribution above, you’ll find these three samples on balance
seem to systematically have more first year students that you
might expect. This is an effect of selection bias.
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Both of these notions are captured in the sampling distribution.
To understand the notion of a sampling distribution, imagine
that you:

1. Calculate the sample mean for sample 1 and store it away
as r; = 1.3.

2. Calculate the sample mean for sample 2 and store it away
as To = 1.2

3. Calculate the sample mean for sample 3 and store it away
as z3 = L.5.

4. Repeat this process 500 times then

5. Plot the distribution of those 500 Ts.

This distribution is shown in the bottom row. We can see that
in this scenario, it’s possible to get s that are as low as around
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1 and as high as around 1.8. The z that we would expect from
this process is around 1.4.

Summary

In these notes we laid out a common goal of making general-
izations: estimating the value of population parameters using
statistics calculated from samples. The process of generaliza-
tion is subject to several sources of error that are lumped into
statistical bias and variation. Three of the central forms of
statistical bias are selection bias, measurement bias, and non-
response bias. Two common forms of variation are sampling
variability and measurement variability. With these notions of
error in mind, we learned about the sampling distribution, the
distribution of statistics that we would observe if we were to
sample from the sample population many times and compute
many statistics.

The sampling distribution is the central concept in making gen-
eralizations so we will revisit it throughout the coming weeks.
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