
Continuous Distributions and Normal
Approximations

Connections to boxes, continuous distributions, and a fundamental result

Imagine that a regular patron of a bar has hit the bottle rather hard one evening. When the
bar closes for the night, they come out to weave their way home. Home is very near, in fact,
just straight down the road. If our inebriate walks straight in the direction of their home, they
can be there very soon. The only problem is - they can’t walk straight. Every minute, they
move in a random direction: backwards or forwards with equal probability. Where will they
be after 𝑛 minutes? This is the famous “drunkard’s walk” problem1.

Each time step (say, each minute), they go backwards or forwards with equal probability, so
it is as if they are walking on the real line, and each minute they go either forward (+1) or
backwards (+1), each with probability 1

2 . Where will our tipsy traveler be after 𝑛 steps?

Here is a plot of a simulation of our itinerant inebriate’s path for 𝑛 = 30:

1https://en.wikipedia.org/wiki/Random_walk
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Where will the wasted walker be after 30 minutes?

Note that the graph is spread out to show the number of steps taken, but the walker is
just walking up and down the 𝑦-axis, since they can only go backwards and forwards. This
kind of walk is called a simple random walk. Random walks have applications in many fields
including physics and finance.They are used to model photons escaping from the center of the
sun (though photons can scatter in any direction), a molecule in a liquid, the price of a stock
etc.

What we have shown here is one possible path our random walker might take and where they
might land up after 𝑛 = 30 minutes. We have plotted this by defining a modified Bernoulli
random variable 𝑋 that takes the values −1 and 1 with an equal probability of 1

2 . Then we
sample 30 times from this vector with replacement. Notice here that we use an argument in
sample() that we haven’t used before, prob. This defines the weights used for sampling. In
this case they are the same, but they might be different. We will discuss this further in the
“Ideas in Code” section. Note that the expected value of our Bernoulli random variable 𝑋 is
0. What is its variance and SD?

Check your answer

𝑋 = {−1, with prob 0.5
1, with prob 0.5

𝐸(𝑋) = (−1) × 0.5 + 1 × 0.5 = 0.
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𝑉 𝑎𝑟(𝑋) = 𝐸(𝑋2) − 𝐸(𝑋)2 = 1 − 0 = 1 = 𝑆𝐷(𝑋).

In the code below we are defining a vector with the values taken by 𝑋, a vector of probabilities
for these values, and the distance traveled by the walker in 𝑛 steps:

x <- c(-1,1) # defining the values taken by X
px <- c(1/2,1/2) # defining the probabilities of these values
sum(sample(x, size = 30, prob = px, replace = TRUE))

For example,in the path shown in the figure above, the first 5 steps taken (−1 represents
backwards and +1 forward): 1, −1, −1, 1, −1, −1. The position at each step is the sum of all
the steps thus far, so this sequence becomes 1, 0, −1, 0, −1, −2. Notice that the end position
after 30 steps is 4. One might ask - what is the probability that the position is 4 after 30
steps? How would we compute this probability? This seems very difficult, so let’s look at the
empirical distribution of the position after 𝑛 = 30 steps (we simulate many many such paths
and look at the value of sum of the +1 and −1 steps at the end).
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The probability distribution of the position
       of a random walker is bell−shaped!

Well, that’s a nice shape! This is an example of the fundamental result mentioned in the
subtitle of this chapter. Now, before we can compute the expected value of the walker’s
position after 𝑛 steps or the associated probabilities, we need to learn about very special sets
of random variables.
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Independent and identically distributed random variables

IID random variables If we have 𝑛 independent random variables 𝑋1, 𝑋2, … , 𝑋𝑛 such that
they all have the same pmf 𝑓(𝑥) and the same cdf 𝐹(𝑥), we call the random variables
𝑋1, 𝑋2, … , 𝑋𝑛 independent and identically distributed random variables. We usually use
the abbreviation i.i.d or iid for “independent and identically distributed’ ’.

This is a very important concept that we have already used to compute the expected value
and variance of a binomial random variable by writing it as a sum of iid Bernoulli random
variables.

A common example is when we toss a coin 𝑛 times and count the number of heads - each coin
toss can be considered a Bernoulli random variable, and the total number of heads is a sum
of 𝑛 iid Bernoulli random variables.

Example: Drawing tickets with replacement

Consider the box shown below:

Say I draw 25 tickets with replacement from this box, and let 𝑋𝑘 be the value of the 𝑘th ticket.
Then each of the 𝑋𝑘 has the same distribution, and they are independent since we draw the
tickets with replacement. Therefore 𝑋1, 𝑋2, … , 𝑋25 are iid random variables, and they each
have a distribution defined by the following pmf:

𝑓(𝑥) =
⎧{
⎨{⎩

0.2, 𝑥 = 0, 3, 4
0.1, 𝑥 = 2
0.3, 𝑥 = 1

The Box Model2

We have seen that we can always represent a discrete random variable using tickets in a
box. We define the tickets so that a ticket drawn at random from the box will have the

2The box model was introduced by Freedman, Pisani, and Purves in their textbook Statistics
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same probability distribution as the random variable. Then it becomes very easy to define 𝑛
random variables that are independent, and identically distributed (as in the example above),
where each random variable is a draw with replacement from the same box. Representing the
random variable using a box of tickets also makes it easy to set up a simulation, since we can
just define a vector representing the box, and use the function sample() setting the argument
replace = TRUE. In this way, we can represent a chance process in which some action that
defines a random variable is repeated over and over again, as a box of tickets from which we
draw tickets with replacement over and over again.

We could do this for any of the examples that we have seen - die rolls, coin tosses, spins of
a roulette wheel etc. Once we represent the random variable using a box of tickets, then it
is easy to compute the expected value of the random variable - it is just the average of the
tickets in the box, and the variance of the random variable is the variance of the tickets in the
box. Note that we compute the population variance, so we divide by 𝑛 not 𝑛 − 1, since the
box represents the population, from which we draw a sample. Let’s revisit some examples:

Rolling a pair of dice and summing the spots

Suppose we want to represent the rolling of a pair of dice and summing the spots using a box
with appropriately marked tickets. Our box could be:

Let 𝑋1 represent drawing a ticket at random from this box. Then 𝑋1 has the discrete uniform
distribution. To represent the sum of spots of a pair of dice, we would draw twice with replace-
ment from this box, calling the result of the first draw 𝑋1 and the second 𝑋2. Notice that
𝑋1 and 𝑋2 are independent, since we drew with replacement, and have the same probability
distribution, so are identically distributed. That is, 𝑋1 and 𝑋2 are i.i.d. random variables,
and we want to know about the sum of these. We can define 𝑆 = 𝑋1 + 𝑋2 and use the box to
simulate the distribution of 𝑆.

Spinning a Vegas roulette wheel and betting on red
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We know that an American roulette wheel has 18 red pockets, 18 black pockets and 2 green
pockets. So if we spin it, the chance of winning if we bet on red is 18/38. Suppose we bet a
dollar on red, then if the ball lands in a red pocket, we get our dollar back and another dollar.
If it lands on black, we lose the dollar we bet. We are usually interested in our “net gain”
if we play over and over again, that is, our total winnings (or losses) after 𝑛 spins. We can
use a box of tickets to model the net gain in 𝑛 spins by letting the box represent the possible
result of one spin, and then drawing 𝑛 times at random from this box. What would the box
to represent the result of one spin of a roulette wheel look like?

Check your answer

The box would have 38 tickets. 18 tickets would be marked with +1 and 20 tickets would be
marked with −1. This would represent the result of one spin. Suppose we want to see what
the net gain would be from playing 100 times, we would draw 100 times with replacement
from this box, and sum the draws.

How would you simulate this process (of spinning the wheel 𝑛 times) in R?

We can generalize the ideas in the roulette example to any set up where we have iid discrete
random variables. We need to think about three things:

1. What are the values of the tickets in the box?

2. How many tickets of each value?

3. How many times do we need to draw?

We are usually interested in the sum or the average of 𝑛 iid random variables, that is, the
sum or average of 𝑛 draws, and the probability distribution of this sum (or average).
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Sums and averages of random variables

Sums

Suppose we make 𝑛 draws at random with replacement from the box in the example, repro-
duced here:

Suppose we sum the drawn tickets. We denote the sum of 𝑛 random variables by 𝑆𝑛. Note
that 𝑆𝑛 = 𝑋1 + 𝑋2 + … + 𝑋𝑛 is also a random variable.

Let’s simulate this by letting 𝑛 = 25 and sampling 25 tickets with replacement, summing them,
and then repeating this process. Note that the smallest sum we can get is 𝑆𝑛 = 0 and the
largest is 100. (Why?)

[1] "The sum of 25 draws is 56"

Now we will repeat this process (of drawing 25 tickets with replacement and summing the
draws) 10 times (note how replicate() is used) :

[1] 56 50 64 51 49 41 64 44 45 51

You can see that the sum 𝑆𝑛 is random and keeps changing with each iteration of the process
(because the 𝑋𝑘 are random numbers).

Since we know the distribution of the 𝑋𝑘 (which is the probability distribution of a single draw
from the box), we can compute 𝐸(𝑋𝑘) and 𝑉 𝑎𝑟(𝑋𝑘). Note that since the 𝑋1, 𝑋2, … , 𝑋𝑛 are
iid, all the 𝑋𝑘 have the same mean and variance. What about their sum 𝑆𝑛?

What are 𝐸(𝑆𝑛) and 𝑉 𝑎𝑟(𝑆𝑛), when 𝑛 = 25?

𝐸(𝑋𝑘) = 0.2 × 0 + 0.3 × 1 + 0.1 × 2 + 0.2 × 3 + 0.2 × 4 = 1.9.

(Note that you could also have just computed the average of the tickets in the box.)

𝑉 𝑎𝑟(𝑋𝑘) = ∑𝑥(𝑥 − 1.9)2 ⋅ 𝑃 (𝑋 = 𝑥) = 2.09
𝐸(𝑆25) = 𝐸(𝑋1 + 𝑋2 + … + 𝑋25) = 25 × 𝐸(𝑋1) = 25 × 1.9.

(We just use 𝑋1 since all the 𝑋𝑘 have the same distribution. We are using the additivity of
expectation here.)
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Since the 𝑋𝑘 are independent, we can use the addivity of variance to get that

𝑉 𝑎𝑟(𝑆25) = 𝑉 𝑎𝑟(𝑋1 + 𝑋2 + … + 𝑋25)
= 𝑉 𝑎𝑟(𝑋1) + 𝑉 𝑎𝑟(𝑋2) + … + 𝑉 𝑎𝑟(𝑋25)
= 25 × 2.09

We can see that the expectation and variance of the sum scale with 𝑛, so that if 𝑆𝑛 is the sum
of 𝑛 iid random variables 𝑋1, 𝑋2, … , 𝑋𝑛, then:

𝐸(𝑆𝑛) = 𝑛 × 𝐸(𝑋1)
𝑉 𝑎𝑟(𝑆𝑛) = 𝑛 × 𝑉 𝑎𝑟(𝑋1)

This does not hold for 𝑆𝐷(𝑆𝑛), though. For the SD, we have the following “law’ ’ for the
standard deviation of the sum.

Square root law for sums of iid random variables The standard deviation of the sum of 𝑛
iid random variables is given by:

𝑆𝐷(𝑆𝑛) = √𝑛 × 𝑆𝐷(𝑋1)

Since all the 𝑋𝑘 have the same distribution, we can use 𝑋1 to compute the mean and SD
of the sum. This law says that if the sample size increases as 𝑛, the expected value scales
as the number of random variables, but the standard deviation of the sum increases more
slowly, scaling as

√𝑛. In other words, if you increase the number of random variables you are
summing, the spread of your sum about its expected value increases, but not as fast as the
expectation of the sum.

Example: The drunkard’s walk

Back to our inebriated random walker who is trying to walk home. Recall that at each time
step, the walker moves forward or backward with equal probability. After 𝑛 steps, their position
can be written as

𝑆𝑛 = 𝑋1 + 𝑋2 + … 𝑋𝑛

where 𝑋𝑘 = +1 or −1 with probability 0.5 each. 𝐸(𝑋𝑘) = 0 and 𝑉 𝑎𝑟(𝑋𝑘) = 1, so we get
that:

𝐸(𝑆𝑛) = 0, 𝑉 𝑎𝑟(𝑆𝑛) = 𝑛, and 𝑆𝐷(𝑛) = √𝑛.
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Averages

We denote the average of the random variables 𝑋1, 𝑋2, … , 𝑋𝑛 by 𝑋 = 𝑆𝑛
𝑛 .

𝑋 is called the sample mean (where the “sample” consists of 𝑋1, 𝑋2, … , 𝑋𝑛).

𝐸(𝑋) = 𝐸 (𝑆𝑛
𝑛 ) = 1

𝑛𝐸(𝑆𝑛) = 𝐸(𝑋1)

This means that the expected value of an average does not scale as 𝑛 (as the sum did), but
𝐸(𝑋) is the same as the expected value of a single random variable. Let’s check the variance
now:

𝑉 𝑎𝑟(𝑋) = 𝑉 𝑎𝑟 (𝑆𝑛
𝑛 ) = 1

𝑛2 𝑉 𝑎𝑟(𝑆𝑛) = 𝑛
𝑛2 𝑉 𝑎𝑟(𝑋1)

Therefore 𝑉 𝑎𝑟(𝑋) = 1
𝑛𝑉 𝑎𝑟(𝑋1)

Note that, just like the sample sum 𝑆𝑛, the sample mean 𝑋 is a random variable, and its
variance scales as 1

𝑛 , which implies that 𝑆𝐷(𝑋) will scale as 1√𝑛 . Let’s write that formally:

Square root law for averages of iid random variables The standard deviation of the average
of 𝑛 iid random variables is given by:

𝑆𝐷(𝑋) = 1√𝑛𝑆𝐷(𝑋1)

Standard error Since 𝑆𝑛 and 𝑋 are numbers computed from the sample 𝑋1, 𝑋2, … , 𝑋𝑛, they
are called statistics. We use the term standard error to denote the standard deviation of
a statistic: 𝑆𝐸(𝑆𝑛) and 𝑆𝐸(𝑋) to distinguish it from the standard deviations of random
variables that do not arise as statistics that are computed from 𝑋1, 𝑋2, … , 𝑋𝑛. We will
see more about these statistics later in the course.

Example: Probability distributions for sums and averages

Let’s go back to the box of colored tickets, draw from this box 𝑛 times, and then compute the
sum and average of the draws. We will simulate the distribution of the sum and the average
of 25 draws to see what the distribution of the statistics looks like. Note that when 𝑛 = 25,
𝐸(𝑆𝑛) = 25 × 1.9 = 47.5 and 𝑆𝐸(𝑆𝑛) = √𝑛 × 𝑆𝐷(𝑋1) = 5 × 1.45 = 7.25
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What do we notice in these figures? First, we see the bell-shape again! Note that the black
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line is the expected value. We see that the center of the distribution for the sample sum grows
as the sample size increases (look at the x-axis), but this does not happen for the distribution
of the sample mean. You can also see that the spread of the data for the sample sum is much
greater when n = 100, but this does not happen for the distribution of the sample mean. Now,
the 𝑦 axis has neither counts nor proportion, but it has density. This makes the histogram have
a total area of one, similar to a probability histogram. Now we can think of this histogram,
called a density histogram as an approximation of the probability histogram.

Density histograms These are histograms for which the total area of all the bars add up to
1. The vertical axis is called density and the units are such that the height of each bar
times its width gives the proportion of the values that fall in the corresponding interval
of the histogram.

We see that we have moved from bar graphs to histograms, which is what we need when we
consider random variables that are not restricted to taking particular values. These are called
continuous random variables.

Continuous distributions

So far, we have talked about discrete distributions, and the probability mass functions for such
distributions. Consider a random variable that takes any value in a given interval. Recall that
we call such random variables continuous. In this situation, we cannot think about discrete
bits of probability mass which are non-zero for certain numbers, but rather we imagine that
our total probability mass of 1 is smeared over the interval, giving us a smooth curve, called
a density, rather than a histogram. To define the probabilities associated with a continuous
random variable, we define a probability density function (pdf) rather than a probability mass
function.

Probability density function of a distribution

Probability density function This is a function 𝑓(𝑥) that satisfies two conditions:

• (1) it is non-negative (𝑓(𝑥) ≥ 0) and
• (2) the total area under the curve 𝑦 = 𝑓(𝑥) is 1. That is,

∫
∞

−∞
𝑓(𝑥)𝑑𝑥 = 1

If 𝑋 is a continuous random variable, we don’t talk about 𝑃(𝑋 = 𝑥), that is, the probability
that 𝑋 takes a particular value. Rather, we ask what is the probability that 𝑋 lies in an
interval around 𝑥. Since there are infinitely many outcomes in any interval on the real line,
no single outcome can have positive probability, so 𝑃(𝑋 = 𝑥) = 0 for any particular 𝑥 in
the interval where 𝑋 is defined. To find the probability that 𝑋 lies in an interval (𝑎, 𝑏), we
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integrate 𝑓(𝑥) over the interval (𝑎, 𝑏). That is, we find the area under the curve 𝑓(𝑥) over the
interval (𝑎, 𝑏).

The probability that a continuous random variable lies in an interval The probability that
𝑋 is in the interval (𝑎, 𝑏) is given by

𝑃(𝑎 < 𝑋 < 𝑏) = 𝑃(𝑋 is in the interval (𝑎, 𝑏)) = ∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥

Note that because a single point will not add any area, we have that:

𝑃(𝑎 < 𝑋 < 𝑏) = 𝑃(𝑎 ≤ 𝑋 < 𝑏) = 𝑃(𝑎 < 𝑋 ≤ 𝑏) = 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏)

Just as we did for discrete random variables, we define the cumulative distribution function
for a continuous distribution.

Cumulative distribution function 𝐹(𝑥)

Cumulative distribution function (cdf) The cdf is defined the same way as for discrete ran-
dom variables, except that we now have an integral instead of a sum.

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫
𝑥

−∞
𝑓(𝑡)𝑑𝑡

The difference is in how we compute 𝑃(𝑋 ≤ 𝑥). There are no discrete bits of probability mass
for 𝐹(𝑥) to collect. Instead we have that 𝐹(𝑥) is the area under the curve 𝑦 = 𝑓(𝑥) all the
way up to the point 𝑥.

Special distributions

Just as in the case of discrete distributions, we have many special named continuous distribu-
tions. We are going to mention two of them here. The first is the a very easy distribution
to think about with a rectangulare geometry that is easy to think about: the uniform distri-
bution. The second distribution we mention here has a shape that has already shown up in
examples in these note - its probability density function has a bell-shape. This is the Normal
distribution and it is the most ubiquitous distribution in statistics and its bell shaped density
curve is used in many disciplines.

Let’s consider the uniform distribution first.
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The Uniform(0,1) distribution

Let 𝑋 be a random variable that takes values in the interval (0, 1) with probability density
function 𝑓(𝑥) = 1 for 𝑥 in (0, 1) and 𝑓(𝑥) = 0 outside of this interval.

Because 𝑓(𝑥) is flat, all intervals of the same length will have the same area, so the distri-
bution defined by 𝑓 is called the Uniform(0, 1) distribution. If a random variable 𝑋 has this
distribution, we denote this by 𝑋 ∼ 𝑈(0, 1). The probability that 𝑋 is in any interval (𝑎, 𝑏)
which is a sub-interval of (0, 1) is given by the area of the rectangle formed by the interval and
𝑦 = 𝑓(𝑥), and so is just the width of the interval.

If you know that 𝑋 has a 𝑈𝑛𝑖𝑓(𝑎, 𝑏) distribution, you should try to use geometry to figure out
probabilities as this is usually easier than integrating.

Example: cdf for the Uniform (0,1) distribution

Let 𝑋 ∼ 𝑈(0, 1). What is 𝐹(0.3)?
Check your answer

𝐹(0.3) = 𝑃(𝑋 ≤ 0.3) = ∫
0.3

−∞
𝑓(𝑡)𝑑𝑡 = ∫

0.3

0
1𝑑𝑡 = 0.3
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In general, for the 𝑈(0, 1) distribution, 𝐹(𝑥) = 𝑥.

The Normal distribution

The Normal distribution, which is also called the Gaussian distribution (after the great 19th
century German mathematician Carl Friedrich Gauss3) describes a continuous random variable
that has a density function with a familiar bell shape4.

−2 0 2
x

y 
=

 f(
x)

If a random variable 𝑋 follows a normal distribution, we write

𝑋 ∼ N(𝜇, 𝜎2)

where 𝜇 is the mean of the distribution and 𝜎 is its standard deviation. (The particular normal
distribution shown above is the standard normal distribution, where 𝜇 = 0 and 𝜎 = 1). The
curve is completely defined by these two numbers and they are called the parameters of the
distribution. Every normal curve can be matched up to the standard normal by transforming
the 𝑥 to standard units which means shifting the curve so it is centered at 0 (subtracting 𝜇)
and scaling the curve so the standard deviation is 1 (dividing by 𝜎).

We can calculate the probability of any event related to 𝑋 by finding the area under the curve
corresponding to that event. That includes the probability that 𝑋 falls within a particular
interval. In the table below, we record the probabilities of three such intervals.

3Another instance where Abraham De Moivre was the first person to discover a distribution, but it was named
after someone else. You can read about De Moivre at https://mathshistory.st-andrews.ac.uk/Biographies/
De_Moivre/.

4For a normally distributed random variable, 𝑓(𝑥) = 1
𝜎

√
2𝜋 𝑒 1

2 ( 𝑥−𝜇
𝜎 )2

. Read more on Wikipedia: https://en.w
ikipedia.org/wiki/Normal_distribution
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Interval Area under the normal curve
Between -1 and 1 0.68
Between -2 and 2 0.95
Between -3 and 3 0.997

So if we know a particular distribution is similar in shape to the normal distribution, we’re
able to calculate the probabilities that the random variable falls within a particular interval.

The Central Limit Theorem

The normal curve is enormously useful because many data distributions are similar to the
normal curve, so we can use the areas under the normal curve to approximate the areas
of the data distributions to figure out proportions. The reason so many data distributions
approximately follow a normal distribution is because of one of the most fundamental results
in statistics called the Central Limit Theorem. This astounding result says that sums (and
averages) of independent and identically distributed random variables will follow
an approximately normal distribution (after transforming them to standard units)
as the sample size grows large. If we restate this in terms of our box model, this theorem
says that, for large enough 𝑛, if we draw 𝑛 times from a box of tickets with replacement, then
the probability distribution of the sum and the average of the draws (standardized) will be
approximately normal, regardless of the distribution of the tickets in the box. This means that
the tickets in the box can be anything, but as long as we draw enough times, the sum will
have an approximately bell-shaped distribution.

Since many useful statistics can be written as the sum or mean of iid random variables, this is
a very important and useful theorem, and we will use it extensively for inference in the next
unit.

Recall our hammered homeseeker from the beginning of this chapter, and the bell-shaped
distribution of their position after half an hour. Since their position can be written as a sum
of all their steps (which were +1 or −1), the Central Limit Theorem applies to the probability
distribution of the sum, and that is why the distribution is bell-shaped. Using the normal
approximation and the empirical rule, we can say that with probability about 32%, our tipsy
friend will be farther than one standard deviation from the starting point, which was the bar.
Recall that one standard deviation for 𝑛 = 30 is

√𝑛 ≈ 5.5 steps. So he may be close to his
home (with about 16% probability) or totally in the other direction (also with about 16%
probability).

15



Ideas in code

Useful functions

Uniform(𝑎, 𝑏)

1. dunif computes the density 𝑓(𝑥) of 𝑋 where 𝑓(𝑥) = 1
𝑏 − 𝑎 , for 𝑎 < 𝑥 < 𝑏.

• Arguments:

– x: the value of 𝑥 in 𝑓(𝑥)
– min: the parameter 𝑎, the lower end point of the interval for 𝑋. The default value

is min = 0
– max: the parameter 𝑏, the upper end point of the interval for 𝑋. The default value

is max = 1

2. punif computes the cdf 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) of 𝑋.

• Arguments:

– q: the value of 𝑥 in 𝐹(𝑥)
– min: the parameter 𝑎, the lower end point of the interval for 𝑋. The default value

is min = 0
– max: the parameter 𝑏, the upper end point of the interval for 𝑋. The default value

is max = 1

3. runif generates random numbers from the 𝑈𝑛𝑖𝑓(𝑎, 𝑏) distribution.

• Arguments:

– n: the size of the sample we want
– min: the parameter 𝑎, the lower end point of the interval for 𝑋. The default value

is min = 0
– max: the parameter 𝑏, the upper end point of the interval for 𝑋. The default value

is max = 1

Normal(𝜇, 𝜎2)

1. dnorm computes the density 𝑓(𝑥) of 𝑋 ∼ 𝑁(𝜇, 𝜎2)

• Arguments:

– x: the value of 𝑥 in 𝑓(𝑥)
– mean: the parameter 𝜇, the mean of the distribution. The default value is mean =

0
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– sd: the parameter 𝜎, the sd of the distribution. The default value is sd = 1

2. pnorm computes the cdf 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) of 𝑋.

• Arguments:

– q: the value of 𝑥 in 𝐹(𝑥)
– mean: the parameter 𝜇, the mean of the distribution. The default value is mean =

0
– sd: the parameter 𝜎, the sd of the distribution. The default value is sd = 1

3. rnorm generates random numbers from the Normal(𝜇, 𝜎2) distribution.

• Arguments:

– n: the size of the sample we want
– mean: the parameter 𝜇, the mean of the distribution. The default value is mean =

0
– sd: the parameter 𝜎, the sd of the distribution. The default value is sd = 1

Example

Let’s verify the empirical rule for the standard normal random variable:

Note that (for example) 𝑃(−1 ≤ 𝑋 ≤ 1) = 𝐹(1) − 𝐹(−1):
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−3 −2 −1 1 2 3
x

f(
x)

pnorm(q = 1) - pnorm(q = -1)

[1] 0.6826895

pnorm(q = 2) - pnorm(q = -2)

[1] 0.9544997

pnorm(q = 3) - pnorm(q = -3)

[1] 0.9973002

The argument prob in the function sample()

We have seen the function sample(), but so far, have only used it when we were sampling
uniformly at random. That is, all the values are equally likely. We can sample according to a
weighted probability, though, by putting in a vector of probabilities. Let’s look at the example
of net gain while betting on red on a roulette spin. Recall that if we bet a dollar on red, then
our net gain is +1 with a probability of 18

38 and −1 with a probability of 20
38 .
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gain <- c(1,-1) # define the gain for a single spin
prob_gain <- c(18/38,20/38) #define the corresponding probabilities
exp_gain <- sum(gain*prob_gain)
exp_gain

[1] -0.05263158

set.seed(123)
#simulate gain from 10 spins of the wheel
sample(x = gain, size = 10, prob = prob_gain, replace = TRUE)

[1] -1 1 -1 1 1 -1 1 1 1 -1

#simulate net gain from 10 spins of the wheel which would sum these
sum(sample(x = gain, size = 10, prob = prob_gain, replace = TRUE))

[1] 0

Here is a simulation showing the Central Limit Theorem at work, with the empirical distribu-
tion becoming gradually more bell-shaped. Net gain is the sum of 𝑛 draws with replacement
from the vector gain defined above using the prob_gain vector.
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Expected net gain (−0.0526*N) in dollars is in red and average (from data) net gain in dollars is in black

Empirical distribution of net gain after N spins (notice the spreads!)

Summary

• We defined the expected value or the mean of a discrete random variable and listed the
properties of expectation including linearity and additivity.

• We defined the variance and standard deviation of a random variable. Both expecta-
tion and variance (and therefore standard deviation) are constants associated to the
distribution of the random variable. The variance is more convenient than the sd for
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computation because it doesn’t have square roots. However, the units are squared, so
you have to be careful while interpreting the variance. We discussed the properties of
variance and standard deviation.

• We wrote down the expected values and variance for various special random variables.

21


	Independent and identically distributed random variables
	Example: Drawing tickets with replacement

	The Box Model
	Rolling a pair of dice and summing the spots
	Spinning a Vegas roulette wheel and betting on red

	Sums and averages of random variables
	Sums
	Example: The drunkard's walk
	Averages
	Example: Probability distributions for sums and averages

	Continuous distributions
	Probability density function of a distribution
	Cumulative distribution function F(x)

	Special distributions
	The Uniform(0,1) distribution
	Example: cdf for the Uniform (0,1) distribution
	The Normal distribution

	The Central Limit Theorem
	Ideas in code
	Useful functions
	Uniform(a, b)
	Normal(\mu, \sigma^2)
	The argument prob in the function sample()

	Summary

