
Summarizing Numerical
Associations

Overplotting, correlation and the least squares line

When we first discussed constructing summaries for numerical
data, you may have noticed that we left out the case when we
are working with two numerical variables. This is a very com-
mon scenario in statistics and data science– so much so that it
deserves its own set of notes! In this lecture, we will discuss
how we can make visualizations and calculate summary statis-
tics involving two numerical variables. Then, we will introduce
a third method of describing data: building a model.

Overplotting

First, we should spotlight an issue that can arise when visualiz-
ing numerical associations. This issue may have the potential
to hide an association between them if it is not treated.

Let’s examine the class survey dataset from earlier in this
course. Stat 20 students filled out a survey that asked them
their opinion on several topics including:
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The result was a data frame with 619 rows (one for every re-
spondent) and 2 columns of discrete numerical data. A natural
way to visualize this data is by creating a scatter plot.
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The eye is immediately drawn to the eerie geometric regularity
of this data. Isn’t real data messier than this? What’s going
on?

A hint is in the sample size. The number of observations in the
data set was over 600 and yet the number of points shown here
is just a bit under 100. Where did those other observations
go?
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It turns out they are in this plot, they’re just piled on top of
one another! Since there are only 10 possible values for each
question, many students ended up selecting the same values for
both, leading their points to be drawn on top of one another.

This phenomenon is called overplotting and it is very common
in large data sets. There are several strategies for dealing with
it, but here we cover two of them.

One approach to fixing the problem of points piled on top of one
another is to unpile them by adding just a little bit of random
noise to their x- and y-coordinate. This technique is called jit-
tering and can be done in ggplot2 by replacing geom_point()
with geom_jitter().

ggplot(class_survey, aes(x = tech,
y = crypto)) +

geom_jitter() +
labs(x = "Technology is destructive to relationships",

y = "cryptocurrency will play a\n dominant role in finance",
title = "No association between opinions on technology and \n cryptocurrency")
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Ahh . . . there are those previously hidden students. Interest-
ingly, the title on the first plot still holds true: even when we’re
looking at all of the students, there doesn’t appear to be much
of a pattern. That is certainly not the case in all overplotted
data sets! Often overplotting will obscure a pattern that jumps
out after the overplotting has been attended to.

The second technique is to make the points transparent
by changing an aesthetic attribute (setting) called the al-
pha value. Let’s combine transparency with jittering to
understand the effect.

ggplot(class_survey, aes(x = tech,
y = crypto)) +

geom_jitter(alpha = .3) +
labs(x = "Technology is destructive to relationships",

y = "cryptocurrency will play a\n dominant role in finance",
title = "No association between opinions on technology and \n cryptocurrency")
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The alpha argument runs between 0 and 1, where 1 is fully
opaque and 0 is fully see-through. Here, alpha = .3, which
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changes all observations from black to gray. Where the points
overlap, their alpha values add to create a dark blob.

There’s still no sign of a strong association between these vari-
ables, but at least, by taking overplotting into consideration,
we’ve made that determination after incorporating all of the
data.

Associations and the correlation coefficient

Which of the following plots do you think depicts the relation-
ship between the high school graduation rate and the poverty
rate among the 50 US states?
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If you guessed the plot on the left, you are correct �.

States with higher poverty rates tend to have lower gradua-
tion rates. This is a prime example of two variables that are
associated. In a previous set of notes we defined association
between two categorical variables, but lets replace that with a
more general definition that can apply here.

Association There is an association between two variables if
the conditional distribution of one varies as you move
across values of the other.

You can detect associations in scatter plots by scanning from
left to right along the x-axis and determining whether or not
the conditional distribution of the y-variable is changing or not.
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In the figure to the left below, when you look first to the states
with low poverty rates (in the blue box), you find that the
conditional distribution of the graduation rate (represented by
the blue density curve along the right side of the scatter plot)
is high: most of those states have graduation rates between
85% and 90%. When you scan to the right in that scatter plot,
and condition on having a high poverty rate (the states in the
red box), the conditional distribution shifts downwards. Those
states have graduations rates in the low 80%s.

These density curves are conditional
distributions because we’ve set a
condition on the data we’re
visualizing. When focusing on the
data that’s in the blue box, for
example, we’ve in effect set up a
filter where Poverty < 9.
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The plot on the right, by contrast, exhibits no association be-
tween poverty rate and graduation rate. When we compare
the low poverty states with the high poverty states, their con-
ditional distributions of Graduation rate are essentially the
same.

So we can use the simple scatter plot to determine whether or
not two numerical variables are associated, but sometimes a
graphic isn’t enough. In these notes we’ll move from graphical
summaries to numerical summaries and construct two differ-
ent approaches to capturing these associations in numbers: the
correlation coefficient and the simple linear model.

The Correlation Coefficient

Let’s set out to engineer our first numerical summary in the
same manner that we have previously, by laying out the prop-
erties that we’d like our summary to have.
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Please watch the following 12 minute video.

Correlation coefficient, 𝑟 The correlation coefficient, 𝑟,
between two variables 𝑥 and 𝑦 is

𝑟 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥
𝑠𝑥

) (𝑦𝑖 − ̄𝑦
𝑠𝑦

)

Several different statistics have been
proposed for measuring association.
This is the most common and is
more specifically called the Pearson
correlation.

Example: Poverty and Graduation rate

The data frame used to create the scatter plot above on the left
looks like this.

# A tibble: 51 x 2
Graduates Poverty

<dbl> <dbl>
1 79.9 14.6
2 90.6 8.3
3 83.8 13.3
4 80.9 18
5 81.1 12.8
6 88.7 9.4
7 87.5 7.8
8 88.7 8.1
9 86 16.8
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10 84.7 12.1
# i 41 more rows

Since it is a data frame, we can use the summarize() function
to calculate our summary statistic.

poverty |>
summarize(r = cor(Poverty, Graduates))

# A tibble: 1 x 1
r

<dbl>
1 -0.747

The value of -0.747 tells us that the linear association between
these variables is negative and reasonably strong. This is our
first example of a bivariate summary statistic: there are two
variables that we put inside the cor() function to compute our
statistic.

Let’s repeat this calculation for the data frame that
created the shapeless scatter plot with no association,
poverty_shuffled.

poverty_shuffled |>
summarize(r = cor(Poverty, Graduates))

# A tibble: 1 x 1
r

<dbl>
1 -0.0546

As expected, that scatter plot yields a correlation coefficient
very close to zero because the points are scattered across all
four quadrants of the plot.
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The Simple Linear Model

Another approach to summarizing the linear association is to
just … draw a line.

This line serves both as a graphical summary and also as a
numerical summary. After all, every line that you draw on
a scatter plot is defined by two numbers: the slope and the
y-intercept. This line is called a simple linear model.

Simple Linear Model An expression for a possible value of the
𝑦 variable, ̂𝑦, as a linear function of the 𝑥 variable with
slope 𝑏1 and y-intercept 𝑏0.

̂𝑦 = 𝑏0 + 𝑏1𝑥

Therefore, a simple linear model captures the linear relationship
of two variables in not one but two summary statistics, 𝑏0 and
𝑏1.

For the line above, we can do our best to eye-ball these. The
line appears to rise -2 percentage points for every 2.5 that it
runs, so I’d estimate the slope to be about −2/2.5 = −0.8. If I
were to draw the line all the way to the left until it crossed the
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y-axis at a poverty rate of 0, its y-intercept would be around
95. So I could express the line that is drawn above as:

̂𝑦 = 95 − 0.8𝑥

The Least Squares Line

If that felt a little shifty to you - drawing a line by hand and
then eyeballing its slope and intercept - we can be more precise
by using a more precisely-defined type of linear model: the
least squares line. This is a method that we’ll study in depth
when we get to the unit on prediction, but for now, we’ll use it
because it makes calculation very easy. You can find the slope
and intercept of the least squares line using statistics that we’re
already familiar with: ̄𝑥, ̄𝑦, 𝑠𝑥, 𝑥𝑦, and 𝑟.

Least Squares Slope
𝑏1 = 𝑟 𝑠𝑦

𝑠𝑥
Least Squares Intercept

𝑏0 = ̄𝑦 − 𝑏1 ̄𝑥

So how does this line look compared to the hand-drawn line?
Let’s calculate the slope and intercept. In R, we can do this
with a function called lm(). To see the slope and intercept for
our model, we can print out our model object.

m1 <- lm(formula = Graduates ~ Poverty, data = poverty)
m1

Call:
lm(formula = Graduates ~ Poverty, data = poverty)

Coefficients:
(Intercept) Poverty

96.2022 -0.8979
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The syntax for lm() uses what’s called “formula notation” in R.
The first argument is a formula of the form y ~ x and can be
read as, “Explain the y as a function of the x”. In the second
argument, you specify which data frame contains the variables
used in the formula. If we want to use to save this slope and
intercept for later use, we can save it into an object, just like a
data frame or a vector can be saved.

We can then add our model to our scatter plot. This can be
done with the geom_smooth() layer in ggplot2 and the method
= "lm" argument (you do not need to worry about the purpose
of the se argument).

ggplot(poverty, aes(x = Poverty,
y = Graduates)) +

geom_point() +
geom_smooth(method = "lm", se = FALSE) +
labs(x = "Poverty Rate",

y = "Graduation Rate") +
theme_bw()
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That works remarkably well!
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Interpreting the slope and intercept

So if the correlation coefficient measures the strength of the
linear relationship between two variables, what exactly are the
slope and intercept of a linear model between involving these
two variables measuring?

The slope captures the expected change in the 𝑦 vari-
able associated with the 𝑥 variable changing by 1 unit.
In this example, states that are separated by 1 percentage point
in their poverty rate tend to be separated by about -.89 in their
graduation rate. This is distinct from what the correlation tells
us because while 𝑟 will stay the same regardless of the units in
which the data is measured, 𝑏1 is expressly designed to tell us
how those units of measurement relate to one another.

What about the intercept? It tells us the value that we’d
expect the 𝑦 to take when the 𝑥 takes a value of zero.
Sometimes that’s an informative statistic, sometime it is not.
In this setting, do you really expect the graduation rate to be
around 96% when their poverty rate is zero? What would it
even look like for a state to have a poverty rate of zero? The
abstraction of the linear model allows us to ponder such a world,
but the reality of economics in the US is that we would never
actually observe poverty rates of zero.

So what good is the intercept? Well, it’s useful in helping us
calculate a residual.

Residuals

One of the benefits of explaining the association between two
variables with a line instead of just the correlation coefficient
is that it allows us to calculate what we would expect an ob-
servation’s y-value to be based on its x value, so that we can
see how far our expectation is from reality. That gap between
expectation and reality is called a residual.

Residual ( ̂𝑒𝑖) The difference between the observed value of a
data point, 𝑦𝑖, and the value that we would expect ac-
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cording to a linear model, ̂𝑦𝑖.

̂𝑒𝑖 = 𝑦𝑖 − ̂𝑦𝑖

̂𝑦𝑖 is said “y hat sub i” and is also
called the “fitted value”.

Let’s calculate the residual for California. Here is that row in
the data set.

poverty |>
filter(State == "California") |>
select(State, Graduates, Poverty)

# A tibble: 1 x 3
State Graduates Poverty
<chr> <dbl> <dbl>

1 California 81.1 12.8

This shows us that for California, 𝑦 = 81.1, so the next step is to
find where the line passes through California’s x-value, 𝑥 = 12.8.
There are several ways to do that calculation, including using
R like a calculator and simply plugging that value into the
equation for the line show above.

y_hat <- 96.2022 - 0.8979 * 12.8
y_hat

[1] 84.70908

With that in hand, we can calculate California’s residual.

81.1 - y_hat

[1] -3.60908

This residual tells us that California is actually a bit of an un-
derachiever. Among states with a poverty rate around 12.8, we
would expect their graduate rate to be around 84.7. California’s
rate, however, is 81.1, a decrease of 3.6.

The calculation of the residual can be seen in the plot below.

13



California (12.8, 81.1)80

84

88

92

5 10 15
Poverty Rate

G
ra

du
at

io
n 

R
at

e

The horizontal dashed line represents ̂𝑦 = 84.7, the y-value of
the least squares line when it passes through 𝑥 = 12.8. The
vertical red dashed line is the residual: the distance between
the line and the observation in the y direction.

Residuals open up a new avenue for numerical statistics. While
the slope and intercept are two statistics that tell us about
the overall linear relationship between the two variables, each
residual is a statistic that tells us whether an individual obser-
vation’s y-value is higher or lower than we’d expect based on
its x-value.

If you have 𝑛 data points, you can
calculate 𝑛 residuals. This is
described below.

While using R as a calculator directly to obtain one residual is
somewhat efficient, this changes when you would like to calcu-
late a residual for each point in your data set. Imagine having
to write 𝑛 lines of code, one for each observation: 𝑦1, 𝑦2, and all
the way to 𝑦𝑛! Luckily, when you save a linear model into an ob-
ject, you store lots of useful information, including ̂𝑦𝑖 and ̂𝑒𝑖 for
every observation 𝑦𝑖. These can be accessed via the fitted()
and residuals() functions, respectively.
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fitted() and residuals() return vectors. To match the vec-
tors up with the observations, we can mutate them as columns
onto the original data frame. From here, we can isolate the
residual for the state of California as before.

poverty |>
mutate(y_hat = fitted(m1),

e_hat = residuals(m1)) |>
select(State, Graduates, Poverty, y_hat, e_hat) |>
filter(State == "California")

# A tibble: 1 x 5
State Graduates Poverty y_hat e_hat
<chr> <dbl> <dbl> <dbl> <dbl>

1 California 81.1 12.8 84.7 -3.61

Summary

In these notes we considered the question of how to capture the
association between two variables with both visualizations and
numerical summary statistics. The correlation coefficient is
one of the most common statistics to use in this case: it cap-
tures the strength and direction of the linear trend. This statis-
tic can be used, along with other simple summary statistics,
to calculate the slope and intercept of the least squares line.
The least squares line is an alternative approach to summariz-
ing the linear relationship between two numerical variables. It
has the advantage of providing an expectation for the y-value of
every observation, which allows us to calculate residuals which
are expressions of whether each observation is higher or lower
than we’d expect.

We’ll spend time practicing calculating these statistics - and
looking at lots of scatter plots - in class.
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