
Data Pipelines
Data pipelines, filtering, logical variables and

comparison operators

Introducing the pipe

At this stage in the course, the number of functions that you
are familiar with has grown dramatically. To do truly powerful
things with data, you need to not just call one of these functions,
but string together many of them in a thoughtful and organized
manner.

An an example, let’s return to our work with the penguins
dataset from last lecture. In order to calculate the mean and
standard deviation of bill length across each species of penguin,
we need to take the original data frame and

1. Use group_by() to inform R we would like to calculate
summaries across levels of a categorical variable (namely,
the species variable).

2. Use summarise() to calculate these summaries.

A conventional approach breaks this process into two distinct
lines of code and saves the output mid-way through.

grouped_penguins <- group_by(penguins, species)
summarise(grouped_penguins,

bill_length_mean = mean(bill_length_mm),
bill_length_sd = sd(bill_length_mm))
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# A tibble: 3 x 3
species bill_length_mean bill_length_sd
<fct> <dbl> <dbl>

1 Adelie 38.8 2.66
2 Chinstrap 48.8 3.34
3 Gentoo 47.6 3.11

An approach that is more concise, easier to read, and generally
faster to run is to compose these functions together with “the
pipe”. The pipe, written |>, is an operator that you have ac-
cess to when you load the tidyverse package. If you have two
functions, f1 and f2, both of which take a data frame as the
first argument, you can pipe the output of f1 directly into f2
using.

f1(DF) |> f2()

Let’s use the pipe to rewrite the code shown above.

group_by(penguins, species) |>
summarise(bill_length_mean = mean(bill_length_mm),

bill_length_sd = sd(bill_length_mm))

# A tibble: 3 x 3
species bill_length_mean bill_length_sd
<fct> <dbl> <dbl>

1 Adelie 38.8 2.66
2 Chinstrap 48.8 3.34
3 Gentoo 47.6 3.11

The first function, group_by(), is unchanged. However the sec-
ond function, summarise(), is now missing its first argument,
the data frame. That is because it is being piped directly in
from the output of the first function.

While this is a fine way to use the pipe, your code is made much
more readable if you format it like this:
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penguins |>
group_by(species) |>
summarise(bill_length_mean = mean(bill_length_mm),

bill_length_sd = sd(bill_length_mm))

# A tibble: 3 x 3
species bill_length_mean bill_length_sd
<fct> <dbl> <dbl>

1 Adelie 38.8 2.66
2 Chinstrap 48.8 3.34
3 Gentoo 47.6 3.11

For the rest of the examples given in the notes, we will stick
with this formatting when using the pipe operator. This code
results in the same output as the first version, but it now reads
a bit like a poem: “Take the penguins data frame, prepare
it for calculations across each species, then calculate the mean
and standard deviation of bill length (across each species of
penguin)”.

This poem is admittedly not
particularly poetic.Breaking the pipe

Here’s another, less poetic way to think about the pipe, as
described by the above image! Most claims about data start
with a raw data set, undergo many subsetting, aggregating, and
cleaning operations, then return a data product. Each one of
these operations can be represented by one of the turns through
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the pipe. It’s good practice to understand the output of each
line of code by breaking the pipe. With regards to our previous
example, we can remove the summarise() and just look at the
output of the group_by() step.

penguins |>
group_by(species)

# A tibble: 333 x 8
# Groups: species [3]

species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
<fct> <fct> <dbl> <dbl> <int> <int>

1 Adelie Torgersen 39.1 18.7 181 3750
2 Adelie Torgersen 39.5 17.4 186 3800
3 Adelie Torgersen 40.3 18 195 3250
4 Adelie Torgersen 36.7 19.3 193 3450
5 Adelie Torgersen 39.3 20.6 190 3650
6 Adelie Torgersen 38.9 17.8 181 3625
7 Adelie Torgersen 39.2 19.6 195 4675
8 Adelie Torgersen 41.1 17.6 182 3200
9 Adelie Torgersen 38.6 21.2 191 3800
10 Adelie Torgersen 34.6 21.1 198 4400
# i 323 more rows
# i 2 more variables: sex <fct>, year <int>

This looks . . . exactly like the original data frame. Well,
not exactly like it: there is now a note at the top that the data
frame now has the notion of groups based on species. In effect,
group_by() has taken the generic data frame and turned it into
the one in the middle below: the same data frame but with rows
now flagged as belonging to one group or another. When we
pipe this grouped data frame into summarise(), summarise()
collapses that data frame down into a single row for each group
and creates a new column for each new summary statistic.
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In addition to providing greater insight on each step in your
data pipeline, breaking the pipe is a fantastic way to trou-
bleshoot any errors in your pipeline. If you run just the first
piece of your pipeline and it works, add the second piece and
try again. Continue this process with the rest of the pieces
until the error occurs. When you run into the error, the piece
you just added is the guilty party.

The pipe in action

We will now look at a few examples to understand the power
of such a simple piece of syntax. In doing so, we will introduce
a few more dplyr functions that will expand your ability to
perform more specific pieces of data analysis.

Our data set of choice begins with a very general focus. In 2007,
Savage and West published A qualitative, theoretical framework
for understanding mammalian sleep1, wherein they “develop a
general, quantitative theory for mammalian sleep that relates
many of its fundamental parameters to metabolic rate and body
size”. Characterizing the sleep patterns of all mammals is a
broad task and their data set is corresponding diverse. Take a
look at the first ten rows of their data below.

# A tibble: 83 x 5
name sleep_total log_bodywt vore conservation
<chr> <dbl> <dbl> <chr> <chr>

1 Cheetah 12.1 10.8 carni lc
1V. M. Savage and G. B. West. A quantitative, theoretical framework for

understanding mammalian sleep. Proceedings of the National Academy
of Sciences, 104 (3):1051-1056, 2007.
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2 Owl monkey 17 6.17 omni <NA>
3 Mountain beaver 14.4 7.21 herbi nt
4 Greater short-tailed shrew 14.9 2.94 omni lc
5 Cow 4 13.3 herbi domesticated
6 Three-toed sloth 14.4 8.26 herbi <NA>
7 Northern fur seal 8.7 9.93 carni vu
8 Vesper mouse 7 3.81 <NA> <NA>
9 Dog 10.1 9.55 carni domesticated
10 Roe deer 3 9.60 herbi lc
# i 73 more rows

In this data set, the unit of observation is a single species and
the variables observed on each are its name, the average length
of sleep each day, the natural log of the average weight, its
dietary pattern, and its conservation status. We can visualize
the relationship between sleep and body size in all 83 species
using a scatter plot.

African elephant

Little brown bat
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The mammals vary from the wee brown bat, slumbering for
nearly 20 hours a day, to the massive African elephant, nodding
off for less than five. That is quite a range! Lets drill down to
smaller subsets of this data frame to gain a more nuanced sense
of what is going on.
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Example 1: Mutation

Oftentimes the variables we are most interested in analyzing
in a data set don’t exist in the form most conducive for doing
so. Other times, they don’t exist at all. For example, note
how in our first output of the msleep data and the scatter plot
that body weight is being presented in log grams (log_bodywt).
In reality, the body weight as originally present in the msleep
dataset is called bodywt and is recorded in kilograms! To get
to log_bodywt, we will perform what is called a mutation.

Mutation

The act of creating a new column in a dataset based on infor-
mation in existing column(s).

There are a variety of different mutations that you can apply to
a column(s) in a dataset. In the last lecture, we overwrote an
existing column with an updated version of itself. Today, we
will perform a mathematical mutation on the bodywt column.

msleep |>
mutate(log_bodywt = log(bodywt * 1000)) |>
select(log_bodywt, bodywt)

# A tibble: 83 x 2
log_bodywt bodywt

<dbl> <dbl>
1 10.8 50
2 6.17 0.48
3 7.21 1.35
4 2.94 0.019
5 13.3 600
6 8.26 3.85
7 9.93 20.5
8 3.81 0.045
9 9.55 14
10 9.60 14.8
# i 73 more rows

Here, the first argument, msleep, is piped to the dplyr func-
tion mutate() and the second argument, log_bodywt, creates
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a new column named log_bodywt by multiplying the bodywt
column by 100 (converting kilograms to grams) and then tak-
ing the natural log. We then pipe this output into select()
to compare the two columns.

You can use mutate() to create multiple columns at the same
time:

msleep |>
mutate(log_bodywt = log(bodywt * 1000),

sleep_total_min = sleep_total*60) |>
select(log_bodywt, bodywt,

sleep_total, sleep_total_min)

# A tibble: 83 x 4
log_bodywt bodywt sleep_total sleep_total_min

<dbl> <dbl> <dbl> <dbl>
1 10.8 50 12.1 726
2 6.17 0.48 17 1020
3 7.21 1.35 14.4 864
4 2.94 0.019 14.9 894
5 13.3 600 4 240
6 8.26 3.85 14.4 864
7 9.93 20.5 8.7 522
8 3.81 0.045 7 420
9 9.55 14 10.1 606
10 9.60 14.8 3 180
# i 73 more rows

If you plan to use these new columns after creating them
more than once, it’s best to save them back into the original
dataset!

msleep <- msleep |>
mutate(log_bodywt = log(bodywt * 1000),

sleep_total_min = sleep_total*60)
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Example 2: Filtering

If you think about the shape of a data frame, there are two
basic ways you might go about slicing and dicing it into smaller
subsets.

One way is to go at it is column-by-column. The act of selecting
a subset of the columns of a data frame is called, well, selecting.
This is what we touched on briefly in the last lecture and in
the previous example. When you select a column, you can
do so either by its name or by its column number (or index).
Selecting columns by name is more useful because their order
tends to be arbitrary and might change over the course of an
analysis.

The other way to go at it is row-by-row. The act of subset-
ting the rows of the data frame based on their row number is
called slicing. As with columns, the order of the rows is also
often arbitrary, so this is of limited use. Much more useful is
filtering.

In the tidyverse, these functions are
named select(), slice(), and
filter().

Filtering The act of subsetting the rows of a data frame based
on the values of one or more variables to extract the ob-
servations of interest.

Filters are powerful because they comb through the values of
the data frame, which is where most of the information is. The
key part of any filter is the condition that you assert for the
rows that are retained in your data frame. Let’s set up a filter
to return only the little brown bat.

msleep |>
filter(name == "Little brown bat")

# A tibble: 1 x 13
name genus vore order conservation sleep_total sleep_rem sleep_cycle awake
<chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 Little~ Myot~ inse~ Chir~ <NA> 19.9 2 0.2 4.1
# i 4 more variables: brainwt <dbl>, bodywt <dbl>, log_bodywt <dbl>,
# sleep_total_min <dbl>
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Here name == "Little brown bat" is the condition that must
be met by any row in the data set to be retained. The syntax
used to set up the condition is a comparison between a column
in the data frame on the left and a possible value of that column
on the right.

Example 2 Detour: Comparison Operators

The filter above uses the most direct condition: it retains the
rows that have a value in the name variable that is precisely
"Little brown bat". In this case, there is only one such row.
There are a range of different comparisons that can be made,
though, and each has its own operator.

Operator Translation
== equal to
!= not equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to

At first, the == operator looks like a typo. Why doesn’t we
use =? The reason is that a single equals sign is already busy
at work in R: it sets the values of arguments inside a function.
Instead of assignment, we want to determine whether the thing
on the left holds the same value as the thing on the right, so
we use ==. It might help you keep things straight if you read it
in your head as “is exactly equal to”.

Let’s return only the rows with large animals, defined as those
with a log body weight greater than 12.

msleep |>
filter(log_bodywt > 12)

# A tibble: 9 x 13
name genus vore order conservation sleep_total sleep_rem sleep_cycle awake
<chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
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1 Cow Bos herbi Arti~ domesticated 4 0.7 0.667 20
2 Asian ~ Elep~ herbi Prob~ en 3.9 NA NA 20.1
3 Horse Equus herbi Peri~ domesticated 2.9 0.6 1 21.1
4 Donkey Equus herbi Peri~ domesticated 3.1 0.4 NA 20.9
5 Giraffe Gira~ herbi Arti~ cd 1.9 0.4 NA 22.1
6 Pilot ~ Glob~ carni Ceta~ cd 2.7 0.1 NA 21.4
7 Africa~ Loxo~ herbi Prob~ vu 3.3 NA NA 20.7
8 Brazil~ Tapi~ herbi Peri~ vu 4.4 1 0.9 19.6
9 Bottle~ Turs~ carni Ceta~ <NA> 5.2 NA NA 18.8
# i 4 more variables: brainwt <dbl>, bodywt <dbl>, log_bodywt <dbl>,
# sleep_total_min <dbl>

There were 9 such animals and you can see all of them are
large.

Example 2 Detour: Logical Operators

What if you want both the little brown bat and the African
elephant? What if you want both the large creatures as well as
those that sleep only briefly? These are tasks that call for mul-
tiple comparisons composed together with the logical operators
&, |, and %in%.

This filter returns the creatures who are large and who sleep
little.

msleep |>
filter(log_bodywt > 12 & sleep_total < 5)

# A tibble: 8 x 13
name genus vore order conservation sleep_total sleep_rem sleep_cycle awake
<chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 Cow Bos herbi Arti~ domesticated 4 0.7 0.667 20
2 Asian ~ Elep~ herbi Prob~ en 3.9 NA NA 20.1
3 Horse Equus herbi Peri~ domesticated 2.9 0.6 1 21.1
4 Donkey Equus herbi Peri~ domesticated 3.1 0.4 NA 20.9
5 Giraffe Gira~ herbi Arti~ cd 1.9 0.4 NA 22.1
6 Pilot ~ Glob~ carni Ceta~ cd 2.7 0.1 NA 21.4
7 Africa~ Loxo~ herbi Prob~ vu 3.3 NA NA 20.7
8 Brazil~ Tapi~ herbi Peri~ vu 4.4 1 0.9 19.6
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# i 4 more variables: brainwt <dbl>, bodywt <dbl>, log_bodywt <dbl>,
# sleep_total_min <dbl>

This can be read as “filter the msleep data frame to return
the rows where both the log body weight is greater than 12
and the sleep total is less than 5”. We see that there are 8
such creatures, one fewer than the data frame with only the
body weight filter (bottle-nosed dolphins sleep, on average, 5.2
hrs).

Using & to represent “and” is common across most computer
languages but you can alternatively use the somewhat more
compact syntax of simply adding the second filter after a
comma.

msleep |>
filter(log_bodywt > 12,

sleep_total < 5)

# A tibble: 8 x 13
name genus vore order conservation sleep_total sleep_rem sleep_cycle awake
<chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 Cow Bos herbi Arti~ domesticated 4 0.7 0.667 20
2 Asian ~ Elep~ herbi Prob~ en 3.9 NA NA 20.1
3 Horse Equus herbi Peri~ domesticated 2.9 0.6 1 21.1
4 Donkey Equus herbi Peri~ domesticated 3.1 0.4 NA 20.9
5 Giraffe Gira~ herbi Arti~ cd 1.9 0.4 NA 22.1
6 Pilot ~ Glob~ carni Ceta~ cd 2.7 0.1 NA 21.4
7 Africa~ Loxo~ herbi Prob~ vu 3.3 NA NA 20.7
8 Brazil~ Tapi~ herbi Peri~ vu 4.4 1 0.9 19.6
# i 4 more variables: brainwt <dbl>, bodywt <dbl>, log_bodywt <dbl>,
# sleep_total_min <dbl>

These two methods are equivalent.

To return all rows that either have a high body weight or low
sleep time or both, use the | operator (sometimes called “ver-
tical bar”).
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msleep |>
filter(log_bodywt > 12 | sleep_total < 5)

# A tibble: 12 x 13
name genus vore order conservation sleep_total sleep_rem sleep_cycle awake
<chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 Cow Bos herbi Arti~ domesticated 4 0.7 0.667 20
2 Roe d~ Capr~ herbi Arti~ lc 3 NA NA 21
3 Asian~ Elep~ herbi Prob~ en 3.9 NA NA 20.1
4 Horse Equus herbi Peri~ domesticated 2.9 0.6 1 21.1
5 Donkey Equus herbi Peri~ domesticated 3.1 0.4 NA 20.9
6 Giraf~ Gira~ herbi Arti~ cd 1.9 0.4 NA 22.1
7 Pilot~ Glob~ carni Ceta~ cd 2.7 0.1 NA 21.4
8 Afric~ Loxo~ herbi Prob~ vu 3.3 NA NA 20.7
9 Sheep Ovis herbi Arti~ domesticated 3.8 0.6 NA 20.2
10 Caspi~ Phoca carni Carn~ vu 3.5 0.4 NA 20.5
11 Brazi~ Tapi~ herbi Peri~ vu 4.4 1 0.9 19.6
12 Bottl~ Turs~ carni Ceta~ <NA> 5.2 NA NA 18.8
# i 4 more variables: brainwt <dbl>, bodywt <dbl>, log_bodywt <dbl>,
# sleep_total_min <dbl>

Be cautious in deciding whether you want to use & or |. While |
is generally read as “or”, we could also describe the above filter
as one that returns the rows that have a high body weight and
the rows that have low sleep times.

One way to keep them straight is to keep an eye on the number
of observations that are returned. The intersection of multiple
conditions (using &) should result in the same or fewer rows
(the orange area) than the union of multiple conditions (using
|) (the blue area).
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When working with nominal categorical variables, the only op-
erator that you’ll be using is ==. You can return a union like
normal using |,

msleep |>
filter(name == "Little brown bat" | name == "African elephant")

# A tibble: 2 x 13
name genus vore order conservation sleep_total sleep_rem sleep_cycle awake
<chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 Africa~ Loxo~ herbi Prob~ vu 3.3 NA NA 20.7
2 Little~ Myot~ inse~ Chir~ <NA> 19.9 2 0.2 4.1
# i 4 more variables: brainwt <dbl>, bodywt <dbl>, log_bodywt <dbl>,
# sleep_total_min <dbl>

Or you can save some typing (and craft more readable code) by
using %in% instead:

msleep |>
filter(name %in% c("Little brown bat", "African elephant"))

# A tibble: 2 x 13
name genus vore order conservation sleep_total sleep_rem sleep_cycle awake
<chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 Africa~ Loxo~ herbi Prob~ vu 3.3 NA NA 20.7
2 Little~ Myot~ inse~ Chir~ <NA> 19.9 2 0.2 4.1
# i 4 more variables: brainwt <dbl>, bodywt <dbl>, log_bodywt <dbl>,
# sleep_total_min <dbl>
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Taxonomy of Data: Logicals

It is useful to pause here to look under the hood of this code.
Once you get accustomed to the comparison operators and the
syntax, the R code reads very similarly to the equivalent En-
glish command. But how are those comparisons being repre-
sented in terms of data?

To answer this question, consider a simple numeric vector of
four integers.

a <- c(2, 4, 6, 8)

We can apply a comparison operator to this vector using the
same syntax as above. Let’s compare each value in this vector
to see if its less than 5.

a < 5

[1] TRUE TRUE FALSE FALSE

The result is a vector of the same length as a where each value
indicates whether the comparison to each element was true or
false. While it looks like a factor or a character vector TRUE and
FALSE, this is actually our newest entry into the Taxonomy of
Data: the logical vector.

class(a < 5)

[1] "logical"

A logical vector can only take two values, TRUE and FALSE (R
also recognizes T and F but not True or true). While it might
seem like a categorical variable with only two levels, a logical
vector has an important property that makes it behave like a
numerical variable.
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sum(a < 5)

[1] 2

In a logical vector, a value of true is represented both by TRUE
and by the number 1 and false by FALSE and the number 0.
This integer representation is why TRUE + TRUE will work (it’s
2!) but "TRUE" + "TRUE" will not.

This dual representation is very useful because it allows us to
compute a proportion using, paradoxically, the mean() func-
tion.

mean(a < 5)

[1] 0.5

a < 5 results in a vector with two 1s and two 0s. When you
take the mean like this, you’re really finding the proportion of
the elements that meet the condition that you laid out in your
comparison. This is a very handy trick. Let’s apply it to the
msleep dataset as part of our next example.

Example 3

In the following data pipeline, we will

1. Split our mammals up by diet (carnivore, herbivore, om-
nivore, etc.)

2. Calculate the proportion of mammals in each diet group
that sleep over eight hours in the day

3. Calculate the number of mammals in each group

This will require both group_by() and summarise(), as well
as our handy trick discussed above and a new summary func-
tion.
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msleep |>
group_by(vore) |>
summarise(p_gt_8hrs = mean(sleep_total > 8),

n = n())

# A tibble: 5 x 3
vore p_gt_8hrs n
<chr> <dbl> <int>

1 carni 0.684 19
2 herbi 0.594 32
3 insecti 1 5
4 omni 0.95 20
5 <NA> 0.714 7

• In the above code, sleep_total > 8 creates a vector of
TRUEs and FALSEs depending on whether the mammal
slept for over eight hours a day. mean() then treats these
TRUEs and FALSEs like 1s and 0s, and produces a propor-
tion of mammals who sleep over eight hours a day in each
diet group.

• The n() summary statistic counts the number of observa-
tions within each group. For example, there are nineteen
carnivores in the msleep dataset. Based on this, we can
deduce that thirteen carnviores satisfied our sleeping con-
dition. This means that when calculating the proportion
for carnivores, the mean() function is taking the average
of thirteen 1s/TRUEs and six 0s/FALSEs!

The code written above could be equivalently written as fol-
lows:

msleep |>
mutate(long_sleep = sleep_total > 8) |>
group_by(vore) |>
summarise(p_gt_8hrs = mean(long_sleep),

n = n())

In this version, the sleep_total > 8 vector is made into a new
column using mutate() called long_sleep. This is a column
of TRUEs and FALSEs, and we can then take its mean directly
in the summarise() step.
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Example 4: Arranging

Sometimes, we are interested in arranging the rows of a data
frame according to some logical ordering of a column. This
ordering is straightforward for numeric columns; the smallest
numbers should be placed first and ascend to the larger ones
(or vice versa). We might also think about what happens when
passing in a column of characters. Luckily, the dplyr package
has a catch-all solution to this in the form of the arrange()
function.

Let’s take a look:

msleep |>
arrange(sleep_total) |>
select(name, sleep_total)

# A tibble: 83 x 2
name sleep_total
<chr> <dbl>

1 Giraffe 1.9
2 Pilot whale 2.7
3 Horse 2.9
4 Roe deer 3
5 Donkey 3.1
6 African elephant 3.3
7 Caspian seal 3.5
8 Sheep 3.8
9 Asian elephant 3.9
10 Cow 4
# i 73 more rows

From this output, we can see that the giraffe sleeps for the
smallest amount of time per day (not even two hours)! But
maybe we are interested in which mammal sleeps the longest. If
this is the case, we can modify the arrange() function slightly
by wrapping our column of interest within desc().

msleep |>
arrange(desc(sleep_total)) |>
select(name, sleep_total)
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# A tibble: 83 x 2
name sleep_total
<chr> <dbl>

1 Little brown bat 19.9
2 Big brown bat 19.7
3 Thick-tailed opposum 19.4
4 Giant armadillo 18.1
5 North American Opossum 18
6 Long-nosed armadillo 17.4
7 Owl monkey 17
8 Arctic ground squirrel 16.6
9 Golden-mantled ground squirrel 15.9
10 Tiger 15.8
# i 73 more rows

What if you pass a column of characters to arrange()?

msleep |>
arrange(vore) |>
select(name, vore, sleep_total)

# A tibble: 83 x 3
name vore sleep_total
<chr> <chr> <dbl>

1 Cheetah carni 12.1
2 Northern fur seal carni 8.7
3 Dog carni 10.1
4 Long-nosed armadillo carni 17.4
5 Domestic cat carni 12.5
6 Pilot whale carni 2.7
7 Gray seal carni 6.2
8 Thick-tailed opposum carni 19.4
9 Slow loris carni 11
10 Northern grasshopper mouse carni 14.5
# i 73 more rows

When arranged by vore, carni comes first, and the rest of the
diet groups will follow in alphabetical order. The mammals
aren’t arranged in any specific order within a diet group, but
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we can change that by passing another column to arrange().
Passing additional columns to arrange() will systematically
break ties. The below code arranges the data frame first by
diet group (from A to Z) and then breaks ties by (ascending)
sleep time:

msleep |>
arrange(vore, sleep_total) |>
select(name, vore, sleep_total)

# A tibble: 83 x 3
name vore sleep_total
<chr> <chr> <dbl>

1 Pilot whale carni 2.7
2 Caspian seal carni 3.5
3 Bottle-nosed dolphin carni 5.2
4 Common porpoise carni 5.6
5 Gray seal carni 6.2
6 Genet carni 6.3
7 Northern fur seal carni 8.7
8 Red fox carni 9.8
9 Dog carni 10.1
10 Jaguar carni 10.4
# i 73 more rows

Summary

If you’re thinking, � , yikes there was a lot of coding in these
notes, you’re right. Don’t worry. We’ll have plenty of time to
practice in class! Here’s a recap of what we went through.

As we begin to do analyses that require multiple operations,
the pipe operator, |>, can be used to stitch the functions
together into a single pipeline. With the pipe operator in tow,
we then introduced some new types of data operations.

We can express existing variables in new ways or create new
variables altogether by performing a mutation. There are sev-
eral ways to subset a data frame but the most important for
data analysis is filtering: subsetting the rows according to a
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condition. In R, that condition is framed in terms of a com-
parison between a variable and a value (or set of values). Com-
parisons take many forms and can be combined using logical
operators. The result is a logical vector that can be used for
filtering or computing summary statistics. Finally, we learned
to arrange a data frame by the ordering of a column.

—————————

The Ideas in Code

Some notes rely heavily on code to augment your learning and
understanding of the main concepts. This “Ideas in Code” sec-
tion is meant to expand more on concepts and functions that
the notes utilize but may not fully explain.

This specific set of notes contains references to many func-
tions from the tidyverse library such as mutate(), select()
filter(), arrange(), ggplot(), group_by(), summarize().
We delve more into some of these functions here.

mutate()

This function allows you to create a new column in a dataframe.
In typical tidyverse fashion, the first argument is a dataframe.
The second argument names and defines how that new column
is created. Above, we saw:

arbuthnot %>%
mutate(total = boys + girls) %>%
arrange(desc(total)) %>%
select(year, total)

# A tibble: 82 x 2
year total
<int> <int>

1 1705 16145
2 1707 16066
3 1698 16052
4 1708 15862
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5 1697 15829
6 1702 15687
7 1701 15616
8 1703 15448
9 1706 15369
10 1699 15363
# i 72 more rows

Here, the first argument, arbuthnot, is piped to mutate() and
the second argument, total = boys + girls, creates a new
column named total by adding together the columns boys
and girls. You can use mutate() to create multiple columns
at the same time:

arbuthnot %>%
mutate(total = boys + girls,

girl_proportion = girls / total) %>%
arrange(desc(total)) %>%
select(year, total, girl_proportion)

# A tibble: 82 x 3
year total girl_proportion
<int> <int> <dbl>

1 1705 16145 0.482
2 1707 16066 0.478
3 1698 16052 0.475
4 1708 15862 0.481
5 1697 15829 0.491
6 1702 15687 0.488
7 1701 15616 0.481
8 1703 15448 0.497
9 1706 15369 0.483
10 1699 15363 0.485
# i 72 more rows

Note that switching the order of the two new columns created
above such that girl_proportion = girls / total comes
before total = boys + girls will produce an error because
total is used before it is created.
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select()

This function is defined above as “selecting a subset of the
columns of a data frame.” You’ve seen how to use select() to
select or “grab” certain columns, but you can also use select()
to omit certain columns. The last block of code can be rewritten
to produce the same output by placing a minus sign, -, in front
of the columns to omit:

arbuthnot %>%
mutate(total = boys + girls,

girl_proportion = girls / total) %>%
arrange(desc(total)) %>%
select(-c(boys, girls))

# A tibble: 82 x 3
year total girl_proportion
<int> <int> <dbl>

1 1705 16145 0.482
2 1707 16066 0.478
3 1698 16052 0.475
4 1708 15862 0.481
5 1697 15829 0.491
6 1702 15687 0.488
7 1701 15616 0.481
8 1703 15448 0.497
9 1706 15369 0.483
10 1699 15363 0.485
# i 72 more rows

arrange()

This function arranges the rows of a data frame according to
some logical ordering of a column. This ordering is straight-
forward for numeric columns; the smallest numbers are placed
first and ascend to the larger ones. That is, unless you use
desc() (which stands for descending).

But what if you pass a column of characters to arrange()?
Let’s take a look:
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penguins %>%
arrange(species) %>%
select(species, island, bill_length_mm)

# A tibble: 333 x 3
species island bill_length_mm
<fct> <fct> <dbl>

1 Adelie Torgersen 39.1
2 Adelie Torgersen 39.5
3 Adelie Torgersen 40.3
4 Adelie Torgersen 36.7
5 Adelie Torgersen 39.3
6 Adelie Torgersen 38.9
7 Adelie Torgersen 39.2
8 Adelie Torgersen 41.1
9 Adelie Torgersen 38.6
10 Adelie Torgersen 34.6
# i 323 more rows

When arranged by species, Adelie penguins come first, fol-
lowed by Chinstrap, then Gentoo. The penguins aren’t ar-
ranged in any specific order within a species, but we can change
that by passing another column to arrange(). Passing ad-
ditional columns to arrange() will systematically break ties.
The below code arranges the data frame first by species (alpha-
betically) and then breaks ties by (ascending) bill length:

penguins %>%
arrange(species, bill_length_mm) %>%
select(species, island, bill_length_mm)

# A tibble: 333 x 3
species island bill_length_mm
<fct> <fct> <dbl>

1 Adelie Dream 32.1
2 Adelie Dream 33.1
3 Adelie Torgersen 33.5
4 Adelie Dream 34
5 Adelie Torgersen 34.4
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6 Adelie Biscoe 34.5
7 Adelie Torgersen 34.6
8 Adelie Torgersen 34.6
9 Adelie Biscoe 35
10 Adelie Biscoe 35
# i 323 more rows

summarize()

This function summarizes a data frame into a single row. We
can summarize a data frame by taking means or calculating the
number of rows as above. We can also do other calculations like
taking a median or calculating the variance of a column:

msleep %>%
summarize(median_sleep = median(sleep_total),

variance_sleep = var(sleep_total),
n = n())

# A tibble: 1 x 3
median_sleep variance_sleep n

<dbl> <dbl> <int>
1 10.1 19.8 83

However, if summarize() is preceded by group_by(), then
it will output multiple rows according to groups specified by
group_by():

msleep %>%
group_by(vore) %>%
summarize(median_sleep = median(sleep_total),

variance_sleep = var(sleep_total),
n = n())

# A tibble: 5 x 4
vore median_sleep variance_sleep n
<chr> <dbl> <dbl> <int>

1 carni 10.4 21.8 19
2 herbi 10.3 23.8 32
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3 insecti 18.1 35.1 5
4 omni 9.9 8.70 20
5 <NA> 10.6 9.02 7

This syntax looks a lot like the syntax used for mutate()! Like
in mutate(), we name and define new columns: new_column =
formula. The difference is that summarize() returns a brand
new data frame that does not contain the columns of the orig-
inal data frame where mutate() returns a data frame with all
columns of the original data frame in addition to the newly
defined ones.
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