
Summarizing Numerical Data
Seeing the forest for the trees.

• Man feigns madness, contemplates life and death, and
seeks revenge.

• Son avenges his father, and it only takes four hours.
• A tragedy written by the English playwright around 1600.
• 29,551 words on a page.

You may recognize each of these as summaries of the play,
“Hamlet”. None of these are wrong, per se, but they do focus on
very different aspects of the work. Summarizing something as
rich and complex as Hamlet invariably involves a large degree
of omission; we’re reducing a document of 29,551 words down
to a single sentence or phrase, after all. But summarization
also involves important choices around what to include.

The same considerations of omission and inclusion come into
play when developing a numerical or graphical summary of a
data set. Some guidance to bear in mind:

What should I include?

• Qualities relevant to the question you’re answering or
claim you’re making

• Features that are aligned with the interest of your audi-
ence

What should I omit?

• Qualities that are irrelevant, distracting, or deceptive
• Replicated or assumed information

1

In these notes we’ll keep this guidance in mind as we discuss
how to summarize numerical data with graphics, in words, and
with statistics. Specifically, we will learn how to:

• Summarize one numerical variable
• Summarize one numerical variable broken up into levels

of a second, categorical variable.

Summarizing two numerical variables is a task which deserves
its own set of notes; that set of notes will come later on!

Code along

As you read through these notes, you’ll find figures and ta-
bles that were produced by running R code. Specifically,
you will see visualizations constructed with ggplot2, and
tables created with another package in the tidyverse li-
brary, dplyr.
The ggplot2 code for the visualizations will be presented
below. We will introduce dplyr in the Ideas in Code
section.
Feel free to open up RStudio and code along with us,
making sure that you load the stat20data library and
penguins dataset as we did last time!

Constructing Graphical Summaries

Let’s turn to an example admittedly less complex than Hamlet:
the Palmer penguins. One of the numerical variables Dr. Gor-
man recorded was the length of the bill in millimeters. The
values of the first 16 penguins are:

bill_16 <- penguins %>%
select(bill_length_mm) %>%
slice(1:16)

bill_16

A tibble: 16 x 1

2

bill_length_mm
<dbl>

1 39.1
2 39.5
3 40.3
4 36.7
5 39.3
6 38.9
7 39.2
8 41.1
9 38.6

10 34.6
11 36.6
12 38.7
13 42.5
14 34.4
15 46
16 37.8

We have many options for different plot types that we could
use to summarize this data graphically. To understand the
differences, it’s helpful to lay out the criterion that we hold
for a summary to be a success. Let’s call those criteria the
desiderata, a word meaning “that which is desired or needed”.

For our first graphic, let’s set a high bar.
Desiderata

• All information must be preserved.

The most commonly used graphic that fulfills this criterion is
the dot plot.

ggplot(data = penguins,
mapping = aes(x= bill_length_mm)) +

geom_dotplot()

3

34 36 38 40 42 44 46
bill_length_mm

The dot plot is, in effect, a one-dimensional scatter plot. Each
observation shows up as a dot and its value corresponds to its
location along the x-axis. Importantly, it fulfills our desiderata:
given this graphic, one can recreate the original data perfectly.
There was no information loss.

As the number of observations grow, however, this sort of graph-
ical summary becomes unwieldy. Instead of focusing on the
value of each observation, it becomes more practical to focus on
the general shape of the distribution. Let’s consider a broader
goal for our graphic.

Desiderata

• Balance depiction of the general characteristics of
the distribution with a fidelity to the individual ob-
servations.

There are several types of graphics that meet this criterion: the
histogram, the density plot, and the violin plot.

Histograms

ggplot(data = penguins,
mapping = aes(x= bill_length_mm)) +

geom_histogram()

4

0

1

2

3

36 40 44
bill_length_mm

co
un

t

At first glance, a histogram looks like deceptively like a bar
chart. There are bars arranged along the x-axis according to
their values with heights that correspond to the count of each
value found in the data set. So how is this not a bar chart?

A histogram involves aggregation. The first step in creating a
histogram is to divide the range of the variable into bins of equal
size. The second step is to count up the number of observations
that occur in each bin. In this way, some observations will
have their own bar (every bar with a count of one) but other
observations will be aggregated into the same bar: the tallest
bar, with a count of 3, corresponds to all observations from
39.09 to 39.30: 39.1, 39.2, and 39.3.

The degree of aggregation performed by the histogram is deter-
mined by the binwidth. Most software will automatically select
the binwidth1, but it can be useful to tinker with different val-
ues to see the distribution at different levels of aggregation. The
binwidth argument within geom_histogram() can be altered
to implement this. Here are four histograms of the same data
that use four different binwidths (try setting your histogram’s
binwidth to one of the options in the below plots)!

1The ggplot2 package in R defaults to 30 bins across the range of the
data. That’s a very rough rule-of-thumb, so tinkering is always a good
idea.

5

0.0

0.5

1.0

1.5

2.0

32.5 35.0 37.5 40.0 42.5
bill_length_mm

co
un

t

binwidth = .2

0

1

2

3

32.5 35.0 37.5 40.0 42.5
bill_length_mm

co
un

t

binwidth = .5

0

2

4

6

32.5 35.0 37.5 40.0 42.5
bill_length_mm

co
un

t

binwidth = 1.5

0

3

6

9

32.5 35.0 37.5 40.0 42.5
bill_length_mm

co
un

t

binwidth = 5

If you are interested in only the coarsest structure in the dis-
tribution, best to use the larger binwidths. If you want to see
more detailed structure, a smaller binwidth is better.

There is a saying that warns about times when you, “can’t see
the forest for the trees”, being overwhelmed by small details
(the trees) and unable to see the bigger picture (the forest). The
histogram, as a graphical tool for summarizing the distribution

6

of a numerical variable, offers a way out. Through your choice
of binwidth, you can determine how much to focus on the forest
(large bindwidth) or the trees (small binwidth).

Density plots

Imagine that you build a histogram and place a cooked piece
of spaghetti over the top of it. The curve created by the pasta
is a form of a density plot.

ggplot(data = penguins,
mapping = aes(x= bill_length_mm)) +

geom_density()

0.00

0.05

0.10

0.15

0.20

34 36 38 40 42 44 46
bill_length_mm

de
ns

ity

Besides the shift from bars to a smooth line, the density plot
also changes the y-axis to feature a quantity called “density”.
We will return to define this term later in the course, but it’s
sufficient to know that the values on the y-axis of a density
plot are rarely useful. The important information is relative:
an area of the curve with twice the density as another area has
roughly twice the number of observations.

The density plot, like the histogram, offers the ability to balance
fidelity to the individual observations against a more general
shape of the distribution. You can tip the balance to feature
what you find most interesting but adjusting the bandwidth
of the density plot. This can be done by including the bw
argument inside of density and setting it to a number (again,
try setting it to one of the options in the below plots)!

7

0.0

0.1

0.2

0.3

0.4

32.5 35.0 37.5 40.0 42.5
bill_length_mm

de
ns

ity

bandwidth = .2

0.0

0.1

0.2

0.3

32.5 35.0 37.5 40.0 42.5
bill_length_mm

de
ns

ity

bandwidth = .5

0.00

0.05

0.10

0.15

32.5 35.0 37.5 40.0 42.5
bill_length_mm

de
ns

ity

bandwidth = 1.5

0.00

0.02

0.04

0.06

32.5 35.0 37.5 40.0 42.5
bill_length_mm

de
ns

ity

bandwidth = 5

A density curve tends to convey the overall shape of a distri-
bution more quickly than does a histogram, but be sure to
experiment with different bandwidths. Strange but important
features of a distribution can be hidden behind a density curve
that is too smooth.

8

Violin plots

Often we’re interested not in the distribution of a single vari-
able, but in the way the distribution of that variable changes
from one group of observational units to another. Let’s add
this item to our list of criteria for a statistical graphic.

Desiderata

• Balance depiction of the general characteristics of
the distribution with a fidelity to the individual ob-
servations.

• Allow for easy comparisons between groups.

There are several different ways to compare the distribution of
a variable across two or more groups, but one of the most useful
is the violin plot. Here is a violin plot of the distribution of bill
length across the three species of penguins.

ggplot(data = penguins,
mapping = aes(x= bill_length_mm,

y = species)) +
geom_violin()

Adelie

Chinstrap

Gentoo

40 50 60
bill_length_mm

sp
ec

ie
s

9

The distribution of bill length in each species is represented by
a shape that often looks like a violin but is in fact a simple
density curve reflected about its x-axis. This means that you
can tinker with a violin plot the same as a density plot, but
changing the bandwidth.

If this plot type looks familiar, you may have seen its cousin,
the box plot.

ggplot(data = penguins,
mapping = aes(x= bill_length_mm,

y = species)) +
geom_boxplot()

Adelie

Chinstrap

Gentoo

40 50 60
bill_length_mm

sp
ec

ie
s

The box plot conveys a similar story to the violin plot: Adelies
have shorter bills than Chinstraps and Gentoos. Box plots
have the advantage of requiring very little computation to con-
struct2, but in a world of powerful computers, that is no longer
remarkable. What they lack is a “smootness-knob” that you
can turn to perform more or less smoothing. For this reason,
violin plots are a more flexible alternative to box plots.

2To read more about one common way to construct a box plot, see the
ggplot2 documentation.

10

https://ggplot2.tidyverse.org/reference/geom_boxplot.html#summary-statistics

Describing Distributions

The desideratum that we used to construct the histogram and
the violin plot include the ability to “depict general character-
istics of the distribution”. The most important characteristics
of a distribution are its shape, center, and spread.

When describing the shape of a distribution in words, pay at-
tention to its modality and skew. The modality of a distribu-
tion captures the number of distinct peaks (or modes) that are
present.

A good example of a distribution that would be described as
unimodal is the original density plot of bill lengths of 16 Adelie
penguins (below left). There is one distinct peak around 39.
Although there is another peak around 34, it is not prominent
enough to be considered a distinct mode. The distribution of
the bill lengths of all 344 penguins (below right), however, can
be described as bimodal.

0.00

0.05

0.10

0.15

0.20

34 36 38 40 42 44 46
bill_length_mm

de
ns

ity

0.00

0.02

0.04

0.06

40 50 60
bill_length_mm

de
ns

ity

Multiple modes are often a hint that there is something more
going on. In the plot to the right above, Chinstraps and Gen-
too penguins, which are larger, are clumped under the right
mode while the smaller Adelie penguins are dominant in the
left mode.

11

The other important characteristic of the shape of a distribution
is its skew.

The skew of a distribution describes the behavior of its tails:
whether the right tail stretches out (right skew), the left tail
stretches out (left skew), or if both tails are of similar length
(symmetric). An example of a persistently right skewed distri-
bution is household income in the United States:

In the US, the richest households have much much higher in-
comes than most, while the poorest households have incomes
that are only a bit lower than most.

12

When translating a graphical summary of a distribution into
words, some degree of judgement must be used. When is a
second peak a mode and when is it just a bump in the distribu-
tion? When is one of the tails of a distribution long enough to
tip the description from being symmetric to being right skewed?
You’ll hone your judgement in part through repeated practice:
looking at lots of distributions and readings lots of descriptions.
You can also let the questions of inclusion and omission be your
guide. Is the feature a characteristic relevant to the question
you’re answering and the phenomenon you’re studying? Or is
it just a distraction from the bigger picture?

Modality and skew capture the shape of the distribution, but
how do we describe its center and spread? “Eyeballing it”
by looking at a graphic is an option. A more precise option,
though, is to calculate a statistic.

Constructing Numerical Summaries

Statistics is both an area of academic study and the object of
that study. Any numerical summary of a data set - a mean
or median, a count or proportion - is a statistic. A statistic is,
fundamentally, a mathematical function where the data is the
input and the output is the observed statistic.

Statisticians don’t just study statistics, though, they construct
them. A statistician gets to decide the form of 𝑓 and, as
with graphics, they construct it to fulfill particular needs: the
desiderata.

To examine the properties of common statistics, let’s move to an
even simpler data set: a vector called x that holds 11 integers.

8, 11, 7, 7, 8, 11, 9, 6, 10, 7, 9

Measures of Center

The mean, the median, and the mode are the three standard
statistics used to measure the center of a distribution. Despite
their ubiquity, these three are not carved somewhere on a stone

13

tablet. They’re common because they’re useful and they’re
useful because they were constructed very thoughtfully.

Let’s start by laying out some possible criteria for a measure of
center.

Desiderata

• Synthesizes the magnitudes of all 𝑛 observations.
• As close as possible to all of the observations.

The (arithmetic) mean fulfills all of these needs.

The function in R: mean()8 + 11 + 7 + 7 + 8 + 11 + 9 + 6 + 10 + 7 + 9
11 = 93

11 = 8.45

The mean synthesizes the magnitudes by taking their sum, then
keeps that sum from getting larger than any of the observations
by dividing by 𝑛. In order to express this function more gener-
ally, we use the following notation

̄𝑥 = 𝑥1 + 𝑥2 + … + 𝑥𝑛
𝑛

where 𝑥1 is the first observation, 𝑥2 is the second observation,
and so on till the 𝑛𝑡ℎ observation, 𝑥𝑛; and ̄𝑥 is said “x bar”.

The mean is the most commonly used measure of center, but
has one notable drawback. What if one of our observations is
an outlier, that is, has a value far more extreme than the rest of
the data? Let’s change the 6 to −200 and see what happens.

8 + 11 + 7 + 7 + 8 + 11 + 9 − 200 + 10 + 7 + 9
11 = −113

11 = −10.27

The mean has plummeted to -10.27, dragged down by this very
low outlier. While it is doing it’s best to stay “as close as
possible to all of the observations”, it isn’t doing a very good
job of representing 10 of the 11 values.

With this in mind, let’s alter the first criterion to inspire a
different statistic.

14

Desiderata

• Synthesize the order of all 𝑛 observations.
• As close as possible to all of the observations.

If we put the numbers in order from smallest to largest, then
the number that is as close as possible to all observations will
be the middle number, the median.

The function in R: median()6 7 7 7 8 8 9 9 10 11 11

As measured by the median, the center of this distribution is 8
(recall the mean measured 8.45). If there were an even number
of observations, the convention is to take the mean of the middle
two values.

The median has the desirable property of being resistant (or
“robust”) to the presence of outliers. See how it responds to
the inclusion of -200.

−200 7 7 7 8 8 9 9 10 11 11

With this outlier, the median remains at 8 while the mean had
dropped to -10.27. This property makes the median the favored
statistic for capturing the center of a skewed distribution.

What if we took a stricter notion of “closeness”?
Desiderata

• Is identical to as many observations as possible.

That leads us to the measure of the mode, or the most common
observation. For our example data set, the mode is 7.

6 7 7 7 8 8 9 9 10 11 11

15

While using the mode for this data set is sensible, it is common
in numerical data for each value to be unique3. In that case,
there are no repeated values, and no identifiable mode. For
that reason, it is unusual to calculate the mode to describe the
center of a numerical variable.

For categorical data, however, the mode is very useful. The
mode of the species variable among the Palmer penguins is
“Adelie”. Trying to compute the mean or the median species
will leave you empty-handed. This is one of the lingering lessons
of the Taxonomy of Data: the type of variable guides how it is
analyzed.

Measures of Spread

There are many different ways to capture spread or dispersion of
data. Here are some basic desiderata we might hope to achieve
with a measure of spread.

Desiderata

• The statistic should be low when the numbers are
the same or very similar to one another.

• The statistic should be high when the numbers are
very different.

• The statistic should not grow or shrink with the sam-
ple size (n).

These desiderata are not met by every measure of spread. Here
is one such measure of spread which does not meet all three!

Range

The range of a set of numbers is simply the maximum number
in the dataset minus its minimum.

𝑟𝑎𝑛𝑔𝑒 = 𝑚𝑎𝑥 − 𝑚𝑖𝑛
3That is, unless you aggregate! The aggregation performed by a his-

togram or a density plot is what allows us to describe numerical data
as unimodel or bimodal.

16

For our set of numbers, the range will be 5.

6 7 7 7 8 8 9 9 10 11 11

Although the first two criterion above are met by the range, the
third one is not. The reason is that if we add a number to our
set which is greater than the maximum value, or smaller than
the minimum value, the value of range will change. Therefore,
increasing our sample size 𝑛 could cause our statistic to grow
or shrink.

Here are some measures of spread which do meet all three crite-
rion. They do this by using incorporating some of the measures
of center that we have already talked about, such as the mean
and the median.

The Sample Variance

The sample variance:

• Takes the differences from each observation, 𝑥𝑖, to the
sample mean ̄𝑥;

• squares them;
• adds them all up;
• divides by 𝑛 − 1;
• then finally, takes the square root.

The function in R: var()𝑠2 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥)2

This formula is rather dense; don’t worry! We won’t ask you to
memorize it. The key is that is fits the three criterion we were
hoping for.

The distance (𝑥𝑖− ̄𝑥)2 will be small when 𝑥𝑖 is close to the mean,
and large when it’s not. This means the first two criterion are
met. Additionally, because we are dividing by a number close
to 𝑛, (𝑛−1), the statistic does not grow or shrink with 𝑛. This
means the last criterion is met!

One other question you might have: why the square?

17

The reason is that spread/distance is a positive quantity. Recall
that the mean of our list was 8.45. Two numbers in our list,
7 and 9, are both 1.45 units away from the mean. However,
7 − 8.45 = −1.45 and 9 − 8.45 = 1.45. As part of the sum, we
will have to add up −1.45 and 1.45, which comes out to 0.

This means that the information from the two data points 7
and 9 have been canceled out! We don’t want this to happen,
so we need to make all of the terms in the sum positive. The
square takes care of that.

For our list:

𝑠2 = 2.87

The Sample Standard Deviation

𝑠 = √ 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥)2

The function in R: sd()
The sample standard deviation 𝑠 is the same as the sample
variance 𝑠2: we’ve just taken the square root. One reason for
using the sample standard deviation is that it at times is more
interpret-able than the sample variance, since it’s measured in
units rather than units squared.

For our list:

𝑠 = 1.69
We can say, therefore, that each data point is about 1.7 units
apart from each other.

While the sample variance and sample standard deviation are
great for measuring symmetric data (which appear enough in
statistics) and also show up a lot in the theory of some topics
that we will later discover, they do have their faults.

18

Namely, when data is not symmetric, the square around 𝑥𝑖 −
̄𝑥 can cause some issues. Asymmetrical data will have many

values 𝑥𝑖 (large or small) which are far from the mean ̄𝑥.

If 𝑥𝑖 − ̄𝑥 is large, then (𝑥𝑖 − ̄𝑥)2 will be very large. Therefore, 𝑠2

and 𝑠 can produce values that are overestimates of the spread
of most of the data. Here are two measures of spread which
counter-act this.

IQR (Interquartile Range)

The IQR is the difference between the median of the larger half
of the sorted data set, 𝑄3, and the median of the smaller half,
𝑄1.

The function in R: IQR()

𝐼𝑄𝑅 = 𝑄3 − 𝑄1

Let’s calculate the IQR for the list of eleven numbers we’ve
been working with. First, we find the median of our dataset.
That’s 8. Then, we split the data into two halves of five. Then
we find the medians of these halves. and take the difference.
These steps are visualized below.

6 7 7 7 8 8 9 9 10 11 11

We have that 𝑄3 = 9.5 and 𝑄1 = 7. Then:

𝐼𝑄𝑅 = 9.5 − 7 = 2.5

The reason the IQR works well for asymmetric data is because
the measure of center it’s based on is the median, not the mean.
The median, being just the middle point of the data and not a
value obtained by calculation of all the numbers in a list, is not

19

impacted when extreme values are tacked onto the end of the
list.

Additional Desiderata

• Is robust to extreme values (outliers).

Our final measure of spread is another option which is resillent
against outliers, but is based off of the mean instead of the
median.

Mean Absolute Deviation (MAD)

The 𝑀𝐴𝐷 is very similar to the sample variance 𝑠2, except
that:

• we divide by 𝑛 rather than 𝑛 − 1;
• we take the absolute value of 𝑥𝑖 − ̄𝑥 instead of squaring

it.

𝑀𝐴𝐷 ∶ 1
𝑛

𝑛
∑
𝑖=1

|𝑥𝑖 − ̄𝑥|

The key difference is the second one. The MAD is great for
summarizing skewed distributions because it isn’t bothered too
much by the presence of extreme values in a set of numbers.
That’s because the absolute value bar just ensures a number
is positive; it doesn’t further amplify that number by squaring
it.

Additional Desiderata

• Is robust to extreme values (outliers).

20

The Ideas in Code

Once you have your data in front of you, you’ve seen how we can
form visual summaries with ggplot2. But how can we calculate
numerical summaries? Furthermore, what if we are concerned
about summarizing a portion of our data, like just one species of
penguin at a time? We will answer these questions below, and
introduce some new functions from the dplyr package (within
the tidyverse library) along the way. We’ll also look at how
factor() can come in handy while plotting.

Calculating Numerical Summaries

One example of a numerical variable we could have examine
is the body mass of a particular penguin (measured in grams).
Let’s calculate both a measure of center and spread for this
variable.

To get an idea of what summaries we should pick, let’s revisit
the density plot from earlier.

0e+00

2e−04

4e−04

3000 4000 5000 6000
body_mass_g

de
ns

ity

What we can glean from this figure is that the distribution of
body masses across all species of penguin is skewed right. This
means that, for instance, a more typical observation lies closer
to 4000 grams than 5000 grams.

21

If we take an average, it is likely to be pulled to the right by the
larger, but less typical, observations. The median observation,
however, would be more resistant to this pull. Therefore, the
median might be a nice choice for a measure of center. Similarly,
since the IQR is initially constructed from the median, it will
serve well here as a measure of spread.

Now, let’s calculate these values. We should first isolate our
variable of interest. We can do this in code by using the dplyr
function select().

body_mass <- select(penguins, body_mass_g)
body_mass

A tibble: 333 x 1
body_mass_g

<int>
1 3750
2 3800
3 3250
4 3450
5 3650
6 3625
7 4675
8 3200
9 3800

10 4400
i 323 more rows

As is custom with dplyr functions, the first argument goes to
the data frame you are working with. The following arguments
are more function specific. In select()’s case, we tell the com-
puter which column/variable we are interested in.

Now, we can calculate our summaries. When working with
a vector, we could use functions like mean() and median()
directly, e.g. median(body_mass_g). However, body_mass_g is
not a standalone vector but is now a column in a data frame
called body_mass! Therefore, we need to access it through a
dplyr function called summarise().

22

summarise(body_mass,
body_mass_median = median(body_mass_g),
body_mass_IQR = IQR(body_mass_g))

A tibble: 1 x 2
body_mass_median body_mass_IQR

<int> <dbl>
1 4050 1225

Note that while the first argument goes to the name of the
data frame, the following arguments are given to the names of
the new columns that summarise() puts in another new data
frame (one row by two columns). You can name the columns
whatever you would like.

Based on what we’ve found, the median here supports the claim
we made above: that a typical penguin has a body mass closer
to 4000 grams than to 5000 grams. The middle 50 percent of
the penguins have body masses within 1225/2 grams, or roughly
600 grams, of 4050.

Groupwise Operations

Let’s return to the bill length examine of a particular penguin,
measured in millimeters. Here is the density plot for all of the
data; for simplicity, earlier we showed you the plot for only the
first 16 observations.

23

0.00

0.02

0.04

0.06

40 50 60
bill_length_mm

de
ns

ity

This plot is interesting. It appears we have a bimodal shape!
While it’s tempting to state that the data is roughly symmet-
ric and calculate an overall mean, we should first see if there
are any other variables at play. It stands to reason that differ-
ent species of penguin might have different anatomical features.
Let’s add species to the mix by using the color aesthetic (see
if you can code along)!

0.00

0.05

0.10

40 50 60
bill_length_mm

de
ns

ity

species

Adelie

Chinstrap

Gentoo

Aha! We now see that each penguin species has its own shape
of distribution when it comes to bill length.

The example above demonstrates a very common scenario: you

24

want to perform some calculations on one particular group of
observations in your data set. But what if you want to do that
same calculation for every group? For example, what if we’d
like to find the average and standard deviation of bill length
among each species of penguin separately?

This task - performing an operation on all groups of a data set
one-by-one - is such a common data science task that nearly
every software tool has a good solution. In the dplyr package,
the solution is the group_by() function. Let’s see it in action.

grouped_penguins <- group_by(penguins, species)

Like most tidyverse functions, the first argument to
group_by() is a data frame. The second argument is the
name of the variable that you want to use to delineate groups.
In this case, we want to group by species to calculate three
separate mean/standard deviation pairs.

Now, assuming we roll with our new grouped_penguins data
frame, we can use summarise() like we did before!

summarise(grouped_penguins,
bill_length_mean = mean(bill_length_mm),
bill_length_sd = sd(bill_length_mm))

A tibble: 3 x 3
species bill_length_mean bill_length_sd
<fct> <dbl> <dbl>

1 Adelie 38.8 2.66
2 Chinstrap 48.8 3.34
3 Gentoo 47.6 3.11

From both the visuals and the numbers, we can see that Adelie
penguins have much smaller bill lengths on average when com-
pared to Chinstrap and Gentoo penguins. We also see that
the Adelie distribution of bill lengths is less variable than the
distributions of the other two species.

25

Plotting with Categorical Variables

Finally, let’s return to the violin plot of bill lengths grouped by
species of penguin.

Adelie

Chinstrap

Gentoo

40 50 60
bill_length_mm

sp
ec

ie
s

What if I wanted the Adelie violin to show up on the top of
the graph? By default, the violin plot puts the level first in the
alphabetical order on the bottom of the plot. Therefore, I need
to reorder the levels of species to put Adelie at the top. This
is where factor() will do the job!

As before, bill_length_mm is not a standalone vector but a
column in a data frame! We cannot access it directly, e.g. by
factor(species, levels = c("Gentoo", "Chinstrap",
"Adelie")).

Therefore, we use the dplyr function mutate(). A muta-
tion involves changing the properties of an existing column,
or adding a new one altogether (which we will explore next
week).

reordered_penguins <-
mutate(penguins,
species =

factor(species, levels = c("Gentoo", "Chinstrap", "Adelie")))

The first argument of mutate() is dedicated to our data frame,
penguins. The second argument can be the name of an existing

26

column or the name of a new column (next week). We want
to change species to be an altered version of itself, hence we
name the second argument species. Make sure you understand
where each set of parentheses closes and ends.

Now, assuming we roll with our new reordered_penguins data
frame, we can use ggplot() like we did before!

Gentoo

Chinstrap

Adelie

40 50 60
bill_length_mm

sp
ec

ie
s

Summary

A summary of a summaries…this better be brief! Summaries of
numerical data - graphical and numerical - often involve choices
of what information to include and what information to omit.
These choices involve a degree of judgement and knowledge of
the criteria that were used to construct the commonly used
statistics and graphics.

27

	Constructing Graphical Summaries
	Histograms
	Density plots
	Violin plots

	Describing Distributions
	Constructing Numerical Summaries
	Measures of Center
	Measures of Spread

	The Ideas in Code
	Calculating Numerical Summaries
	Groupwise Operations
	Plotting with Categorical Variables

	Summary

